

NTHU

Project 2
On-line Shopping Intention Prediction

指導教授：邱銘傳 教授

Group3: 10803446 胡理嫚

Group3: 10803454 李佩怡

Group3: 10803436 朱文伃

1. Motivation and purpose

Owing to the lower level of sale volumes of the washing machine on the Internet

last year, the manager of the marketing department in ABC household electric appliance

company requires us to put forward solutions to elevate the level of sales volume. To

achieve this, we analyze the buying behaviors of customers, predict the purchasing

intention, find out the root causes of low sales rate and the opportunities of

improvement, and apply the marketing methods to increase the purchasing intention by

collecting and analyzing all the information about customers’ activities on the related

shopping websites.

2. Dataset description

In our project, the purchasing intention model is designed as a binary classification

problem measuring the user’s intention to finalize the transaction. The dataset consists

of feature vectors belonging to 12,330 sessions [1]. The dataset was formed so that each

session would belong to a different user in a 1-year period to avoid any tendency to a

specific campaign, special day, user profile, or period. Of the 12,330 sessions in the

dataset, 84.5% (10,422) were negative class samples that did not end with shopping,

and the rest (1908) were positive class samples ending with shopping. The dataset used

for model training contains 18 features, including Administrative, Administrative,

Duration, Informational, Informational duration, Product Related, Product Related,

Duration, Bounce rates, Exit Rates, Page Values, Special Day, Month, Operating

systems, Browser, Region, Traffic type, Visitor type, Weekend, Revenue. A detailed

introduction is shown in Table 1 and Table 2.

Table 1. Part 1 of dataset description

Feature name Feature description Min

value

Max

value

SD

Administrative Number of pages visited by the visitor about

account management

0 27 3.32

Administrative

duration

Total amount of time (in seconds) spent by the

visitor on account management related pages

0 3398 176.70

Informational Number of pages visited by the visitor about

Web site, communication and address

information of the shopping site

0 24 1.26

Informational

duration

Total amount of time (in seconds) spent by the

visitor on information pages

0 2549 140.64

Product

Related

Number of pages visited by visitor about

product related pages

0 705 44.45

Product

Related

duration

Total amount of time (in seconds) spent by the

visitor on product related pages

0 63973 1912.25

Bounce rate Average bounce rate value of the pages visited

by visitor

0 0.2 0.04

Exit rate Average exit rate value of pages visited by

visitor

0 0.2 0.05

Page value Average page value of the pages visited by the

visitor

0 361 18.55

Special day Closeness of the site visiting time to a special

day

0 1.0 0.19

Table 2. Part 2 of dataset description

Feature name Feature description Number of categorical

values

Operating

Systems

Operating system of the visitor 8

Browser Browser of the visitor 13

Region Geographic region from which the session has

been started by the visitor

9

Traffic Type Traffic source by which the visitor has arrived at

the Web site (e.g., banner, SMS, direct)

20

Visitor Type Visitor type as “New Visitor,” ”Returning

Visitor,” and “Other”

3

Weekend Boolean value indicating whether the date of the

visit is weekend

2

Month Month value of the visit date 12

Revenue Class label indicating whether the visit has been

finalized with a transaction

2

3. Oversampling

When implementing classification algorithms, the structure of the data is of great

significance. Specifically, the balance between the number of observations for each

potential output heavily influences the prediction’s performance. Trying to make

predictions with regards to a minority class, we use SMOTE which is a technique based

on nearest neighbors to make the number of observations balanced.

SMOTE is a technique based on nearest neighbors judged by Euclidean Distance

between data points in feature space. It has four steps for implementations:

Step 1. For each minority instance, k number of nearest neighbors are found such

that they also belong to the same class where k=SMOTE%/100.

Step 2. The difference between the feature vector of the considered instance and the

feature vectors of the k nearest neighbors are found. As a consequence, k number of

difference vectors are obtained.

Step 3. The k difference vectors are each multiplied by a random number between

0 and 1 (excluding 0 and 1).

Step4. The difference vectors, after being multiplied by random numbers, are added

to the feature vector of the considered instance (original minority instance) at each

iteration. (See code in Fig. 1)

Since the dataset is created by selecting multiple instances of the minority class

more than once, first oversampling the dataset and then dividing it into training and test

sets may lead to biased results due to the possibility that the same minority class may

be used both for training and testing. For this reason, in this project, 30% (3699) of the

dataset consisting of 12330 samples is first left out for testing and the oversampling

method is applied to the remaining 70% (8631) of the samples.

Figure 1. The code of oversampling-SMOTE.

Before oversampling, the number of class 0 is 1286 and 7345 of class 1; after

oversampling, the number of class 0 and class 1 are both 7345. (See Fig. 2 and Fig. 3)

 Figure 2. Before oversampling Figure 3. After oversampling

4. Feature Selection

 The two biggest problems in machine learning are overfitting (in terms of fitting

data that cannot be generalized outside the data set) and dimensional disasters (non-

intuitive and sparse in high-dimensional data). By reducing the number of features in

the model and trying to optimize model performance, feature selection helps avoid these

two problems. In this way, feature selection provides an additional benefit: model

interpretation. With fewer features, the output model becomes simpler and easier to

interpret, and makes it easier to trust the predictions made by the model.

In this section, we use the feature selection method to filter out important features

to further improve the classification performance of MLP, SVM, RNN, and CNN

algorithms. Besides, because using fewer features to achieve better or similar

classification results will also improve the scalability of the real-time online shopper

behavior analysis system. Another method for feature selection is to use feature

extraction (such as principal component analysis) for dimensionality reduction.

However, in this case, the features in the reduced space will be a linear combination of

17 attributes, which requires tracking all features during the visit and updating the

feature vector after the visitor takes a new operation. Therefore, it is considered

appropriate to use feature selection instead of feature extraction within the scope of this

study.

For feature ranking, we tend to apply filter-based feature selection and wrapper

algorithms. The difference between the two methods is that the wrapper algorithm

requires a learning algorithm to obtain a simplified feature set for a specific classifier.

Here, we use correlation, minimum redundancy maximum relevance (mRMR) filters

and a wrapper method—random forest (RF) for feature selection.

4.1 Correlation

 This method filters and obtains only a subset of the relevant features. The filtering

here is done using a correlation matrix, which is usually done using Pearson Correlation.

Here, we first draw a Pearson Correlation heat map (shown in Fig. 4) and look at the

correlation between the independent variable and the output variable MEDV. We only

select features that have a correlation with the output variable greater than 0.09 (taken

as an absolute value). In correlation matrix, the value of the correlation coefficient is

between -1 and 1: a value close to 0 indicates weak correlation (exact 0 means no

correlation), a value close to 1 means strong positive correlation, and a value close to -

1 means strong negative correlation.

4.2 mRMR

 Unlike Correlation, a univariate filter method, mRMR is a multivariate filter

method, which is heuristic and can be used along with other methods (such as the

wrapper method). mRMR can use mutual information, correlation or distance/similarity

scores to select features. Its goal is to punish the relevance of features by their

redundancy in the presence of other selected features. We use the mRMR software

package provided by Peng et al. [1] to implement feature selection and select 9

important features.

4.3 Random Forest

In data science work, RF is a commonly used feature selection method. The idea

of feature importance evaluation is to see how much each feature contributes to each

tree in a random forest, then take an average, and finally, the ratio of the contributions

between features is compared. Contribution can usually be measured using the Gini

index or OOB error rate as an evaluation indicator. In this project, we call

“RandomForestClassifier ()” in the scikit-learn random forest class library to filter and

sort the features. The results are shown in Fig. 5. The most important feature shown is

the eighth feature, "PageValues".

Figure 4. Pearson correlation heat map

Figure 5. Feature selection ranking results from RF

According to the above three feature selection methods, Table 3 summaries the

ranking of the features selected from different methods.

Table 3. Feature ranking

Rank

-ing

Filter-based feature selection Wrapper method

Correlation mRMR RF

1 PageValues ProductRelated_Duration PageValues

2 ExitRates ExitRates ExitRates

3 ProductRelated BounceRates ProductRelated

4 ProductRelated_Duration SpecialDay ProductRelated_Duration

5 BounceRate VisitorType BounceRate

6 Administrative Weekend Administrative

7 VisitorType PageValues Month

8 Informational OperatingSystems Administrative_Duration

9 Administrative_Duration Informational TrafficType

10 SpecialDay Month Region

11 Month Region Browser

12 Informational_Duration Browser OperatingSystems

13 Weekend Administrative Informational

14 Browser TrafficType Informational_Duration

15 OperatingSystems Informational_Duration Weekend

16 Region ProductRelated VisitorType

17 TrafficType Administrative_Duration SpecialDay

5. Prediction of online shoppers’ purchasing intention

5.1 Multilayer perceptron (MLP)

5.1.1 MLP definition

 Subsequent work with multilayer perceptrons has shown that they are capable of

approximating an XOR operator as well as many other non-linear functions. A

multilayer perceptron is a class of feedforward artificial neural network. It consists of

at least three layers of nodes: an input layer, a hidden layer, and an output layer. Except

for the input nodes, each node is a neuron that uses a nonlinear activation function.

 There are three common activation functions: sigmoids, hyperbolic tangent, and

rectifier linear unit(ReLU). In recent developments of deep learning, ReLU is used

more frequently as one of the possible ways to overcome the numerical problems

related to the sigmoids. As a consequence, we use ReLU as the activation function in

our MLP model.

 Moreover, we are always looking to optimize model performance mostly by reducing

the cost function associated with the model. There are several optimization algorithms

that can help us improve model performance, including AdaGrad, RMSProp, and Adam,

etc. In this project, we use Adam as the optimizer in the MLP model for some reasons.

First, it’s quite computationally efficient; second, it works well with large data sets and

large parameters. What’s more, it requires little memory space.

5.1.2 Parameter Setting

 Under the condition of both reducing loss and increasing accuracy, we set different

numbers of neurons and numbers of hidden layers with different feature selection

methods, denormalized, and normalized dataset. For example,

hideen_layer_sizes=(27,50) represents 27 neurons in first hidden layer and 50 neurons

in second layer respectively. Under the circumstance, the loss is reduced to 0.298. Either

adding or reducing a hidden layer will lead to greater loss. Fig. 6 gives the python code.

Figure 6. MLP model

5.1.3 Experiment Results

The accuracy of the MLP model using an accuracy score from sklearn with four

feature selection methods is shown in Table 4.

Table 4. MLP experiment results

 All Features Correlation mRMR RF

After normalized 0.862 0.866 0.860 0.867

Before normalized 0.875 0.702 0.873 0.875

We can find out that the accuracy obtained with mRMR and the normalized dataset

is the worst (0.86). With the denormalized dataset, the accuracy obtained with

correlation is only 0.702. Overall, RF has greater performance; especially with 10

features, the accuracy can be up to 0.87. As a consequence, we recommend use RF as

feature selection methods with the MLP model.

5.2 Support Vector Machines (SVM)

5.2.1 Principle of SVM

SVM, an algorithm used for classification, is proposed by Vapnik and his colleagues

according to statistical learning theory. SVM shows many advantages in solving the

problems of the small sample and high-dimensional mode discrimination. SVM has

been used in many practical problems like handwriting recognition, three-dimension

target recognition, face recognition, and image classification.

In simple terms, the concept of SVM is to use the principle of the minimization of

statistical risk to find a hyperplane to separate the two different sets and to maximize

the margin between the two classes. For example, in two-dimensional space, the

features are height and weight in Fig. 7. We want to classify all the data points to boys

and girls. Since the data in this figure is not mixed together, they can be classified

perfectly, and we called this situation hard-margin SVM. In the mathematical formula,

boys（𝑦௜ = 1）should satisfy 𝑤்𝑥 + 𝑏 ≥ 1 and girls（𝑦௜ = −1）should satisfy 𝑤்𝑥 +

𝑏 ≤ −1 simultaneously. The goal of the SVM method is to find the hyperplane which can

separate the two classes, and make the margins as bigger as possible.

Figure 7. Hard-margin SVM

In reality, data is unlikely classified perfectly, so during the training process, some

data can be tolerated to fall into the margins like the Fig. 8. shows, this situation we

called soft-margin SVM.

Figure 8. Soft-margin SVM

The method of tolerating the bias data is described below. For example, the lowest

blue cross should fall within the range of 𝑤்𝑥 + 𝑏 ≥ 1 theoretically, but due to the

tolerance, the blue cross fall within the range of 𝑤்𝑥 + 𝑏 ≤ 1. To match this problem,

we only need to subtract a value from the original right formula, and this value called

slack variable（ε）, the parameter which tolerates data falling within margins. The bigger

the value, the bigger the tolerant range.

If we want to obtain a perfect classified consequence, the choice of kernel function

becomes very important. Kernel function can solve the problems when the data in

different classes can’t be linearly separated in the original dimension by the method of

non-linear projection to higher-dimensional space.

Figure 9. Map original space to higher dimension space

The original data can be separated into two classes by a hyperplane perfectly if it

can be projected to a higher dimensional space called Hillbert space（H）in Fig. 9. The

formula of projection is difficult designed, so we can use kernel function to help

interpret it. The definition of kernel function is below, for all data, if a function can

satisfy k(x, y) =< φ(x), φ(y) > k （ x, y ） is a kernel function, the content in the

parenthesis is vector dot product, the model structure is showed in Fig. 10.

Figure 10. SVM model structure

5.2.2 SVM model construction

In the project, we first use a method called smote to obtain oversampling data to

deal with the problem of the unbalanced dataset. Second, we use three methods contains

random forest, correlation, and mRMR to select the important features for data

processing. Then, we use SVM to predict whether the users on the Internet will buy the

products or not. The consequence can be classified into two classes: buy it and do

nothing.

Above is the python code we used. We use pandas to read the dataset and separate

the column “Revenue” from other columns to be the predicted consequence. Then we

use a python package called train test split whose main function is to divide the data

into training and testing sets randomly. In this case, our training set is 70%, and the

testing set is 30%. After this step, we use another package called SVC, and the kernel

is RBF to train the model. Finally, we print the confusion matrix which contains the

information about accuracy showed in Fig. 11.

Figure 11. Confusion matrix

A confusion matrix is a table that is often used to describe the performance of a

classification model (or "classifier") on a set of test data for which the true values are

known. TP are cases in which we predicted yes, and they do. TN is which we predicted

no, and they don't. FP is which we predicted yes, but they don't actually are. (Also

known as a "Type I error"). FN is which we predicted no, but they actually do. (Also

known as a "Type II error"). Precision is used to evaluate when we predict yes, how

often it’s correct, and recall is when it’s actually yes, how often does the model predict

yes. Accuracy is overall, how often the classifier is correct. F1-score is a weighted

average of recall and precision.

5.2.3 Experiment analysis of SVM

We combine four feature selection results（all data, extra tree, random forest,

correlation, and mRMR）with four data processing methods（do nothing, normalization

plus oversampling, denormalization but oversampling, normalization but no

oversampling）. The training and testing sets are divided by the proportion of 70%:30%

and 80%:20%. From Table 5, we can find that the proportions of the two sets in this

setting have similar results, so both proportions can be adopted. Between the data is

normalized or not, the former one has better prediction accuracy in classification using

the SVM method. However, the comparison of the original data and the oversampling

data, we can find that using the original data to train the model can obtain better results.

Table 5 gives the combination results.

Table 5. Experiment results of SVM

Data processing Accuracy

train70% test30% All Features Correlation mRMR RF

After normalized 0.85 0.83 0.84 0.84

After normalized 0.86 0.88 0.88 0.88

Before normalized 0.73 0.73 0.85 0.76

Before normalized 0.84 0.85 0.84 0.85

train80% test20% All Features Correlation mRMR RF

After normalized 0.86 0.84 0.85 0.85

After normalized 0.88 0.89 0.87 0.88

Before normalized 0.74 0.75 0.84 0.76

Before normalized 0.85 0.83 0.84 0.82

Data processing F1-score

train70% test30% All Features Correlation mRMR RF

After normalized 0.874 0.873 0.857 0.877

After normalized 0.929 0.932 0.932 0.935

Before normalized 0.807 0.819 0.805 0.860

Before normalized 0.920 0.914 0.917 0.910

train80% test20% All Features Correlation mRMR RF

After normalized 0.882 0.876 0.864 0.874

After normalized 0.936 0.930 0.933 0.936

Before normalized 0.809 0.830 0.811 0.861

Before normalized 0.918 0.912 0.917 0.921

5.3 RNN & CNN

 In this section, we focus on recurrent neural networks (RNN) and convolutional

neural networks (CNN) in further data processing, model construction, model

performance improvement, training, and testing.

5.3.1 Data processing for RNN & CNN

 In order to make the data suitable for using RNN and CNN models, this section

deletes the feature "Browser" according to the feature selection results above to

facilitate the conversion of the array data into grayscale images; then converts the

oversampled data into 𝑚 × 𝑛 grayscale images. The result is shown in Fig. 12~Fig.

15. Finally, the picture data is normalized after divided by 255.

Figure 12. Grayscale image with 16 features

Figure 13. Grayscale image with 9 features selected by Pearson correlation

Figure 14. Grayscale image with 9 features by mRMR

Figure 15. Grayscale image with 7 features selected by RF

5.3.2 Model architecture of RNN & CNN

 The RNN and CNN model structures are shown in Fig. 16 and Fig. 17. Taking

RNN as an example, the hyperparameters in the model are combined to obtain the

optimal parameter setting level. The control variable method is used to adjust the

parameters and perform experiments. We can see Table 6 for all the experimental results.

As can be seen from the table, when the parameters of the RNN model are set to the

parameter values of the bold part, the accuracy of the model prediction is the highest;

the performance improvement method of the CNN model is the same, and will not be

repeated here.

5.3.3 Training and testing for RNN &CNN

 Fig. 18 and Fig. 19 give the program codes for RNN and CNN training. The

number of training iterations is set to 20. The ratio of the training set to the test set of

both models is 7: 3; RNN randomly extracts 20% of the data from the training set as

the verification set, and CNN randomly extracts 12% of the training set as the

verification set. The batch size of RNN training is set to 16 and that of CNN training is

32. The RNN monitors the value of "val_loss" during training and automatically

reduces the learning rate to avoid falling into a bottleneck. The performance of RNN

and CNN models with different features is shown in Table 7. There is a total of 8

experiments.

Figure 16. RNN model structure

Figure 17. CNN model structure

Table 6. RNN model parameter settings and experimental results

Experiment No.

1 2 3 4 5 6 7 8

SimpleRNN
Layer Number 1 1 1 1 1 1 1 2

Neuron Number 32 32 32 32 32 32 32 32/16

Other Algorithms (Layers，Neuro Number) 0 0 0 0 0 0 LSTM(1, 16) 0

Dense

Layer Number 2 2 2 2 2 2 2 2

Neuron Number 128/64 128/64 128/64 128/64 128/64 128/64 128/64 128/64

Activation Function relu sigmoid sigmoid sigmoid sigmoid sigmoid sigmoid sigmoid

Output Layer Activation Function softmax softmax softmax softmax softmax softmax softmax softmax

Learning Rate 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Optimizer Adam Adam SGD RMSProp AdaGrad Adamax Adam Adam

Batch_size 16 16 16 16 16 16 16 16

Epoch 20 20 20 20 20 20 20 20

Accuracy
1th run 0.87051 0.87456 0.84455 0.87186 0.76075 0.86699 0.87105 0.87321

2th run 0.86753 0.87591 0.78021 0.86834 0.75994 0.86807 0.87213 0.87024

Figure 18. RNN training program code

Figure 19. CNN training program code

Table 7. The performance of RNN & CNN with different features

 All Features Correlation mRMR RF

RNN 0.87537 0.87159 0.86780 0.87780

CNN 0.86834 0.86834 0.85104 0.87672

5.3.4 Generalizability of RNN & CNN model

 According to overall experiment results (see code archive in the attachment), we

can see that there is no overfitting in all trained models and the accuracy of the test set

in RNN & CNN is higher than that of the training set and the validation set, reaching

87.54% and 86.83% respectively. In addition, the accuracy for testing becomes a little

better after the feature selection (87.78% for RNN and 87.67% for CNN). Thus, we

conclude that both the models of RNN and CNN have a good generalizability.

5.4 Comparison of experiment results

 Table 8 shows the summary results of the above four model experiments. The

results implicate that the SVM has the best performance after feature selection.

Therefore, the SVM is the priority model to predict the on-line (real-time) shopping

intention of customers.

Table 8. Testing accuracy of four models

 All Features Correlation mRMR RF

MLP 0.862 0.866 0.860 0.867

SVM 0.860 0.880 0.880 0.880

RNN 0.875 0.872 0.868 0.878

CNN 0.868 0.868 0.851 0.877

6. Solutions for improving sale volumes

To achieve the sale goal (increase volumes by 20%), our website of the washing

machine is designed to automatically offer content during a visit if the user is likely to

abandon the site without shopping but predicted shopping intention is high. In other

words, we apply our SVM model to predict purchasing intention after the website

abandonment likelihood is more than a threshold and trigger the website to offer content

for target customers, which imitate the behavior of a salesperson in the virtual shopping

environment. In this way, we can timely take actions accordingly to improve the

shopping cart abandonment and purchase conversion rates.

Besides, from the RF method, we can find the most important features including

“PageValues”, “ExitRates”, “BounceRate”, “Month”, “ProductRelated”,

“ProductRelated_Duration”, and “Administrative” in our dataset. Therefore, we try to

propose some suggestions to improve the sales rate based on that. Both high

“BounceRate” and “ExitRates” can represent an inappropriate design of the landing

page and other pages of the website, so we need to redesign the content or the

typesetting of the whole website to attract more customers. If the value of

“ProductRelated” or “ProductRelated_Duration” is on the high side, it can represent

that customers are interested in our products or they are hesitating. At this moment, we

can encourage the customers to make the orders by sending additional advertisements

or discounts automatically. Through the “Month” data, we can see that the sales rate is

totally different from the slack season and peak season. So, our company can launch

promotional activities to increase the sales rate in the slack season. All in all, we want

to increase sales by about 20% to reach our target by the implementation of the above

methods.

7. Conclusion and future work

In this project, we firstly construct a real-time purchasing intention prediction

system for the virtual shopping environment, using aggregated pageview data kept track

during the visit along with user information as input to machine learning algorithms.

Besides, we apply oversampling and feature selection preprocessing techniques to

improve the success rates and scalability of the algorithms and find out significant

factors for purchasing intention. The experiments show that the SVM achieves the best

results and the first 7 features selected by RF are important effect factors.

Based on the above work, we provide several solutions for improving the sale

volumes of washing machines. First of all, the SVM model is applied with website

abandonment likelihood prediction system simultaneously to trigger offering content

during a visit, which imitates salesperson so that it enhances the purchase conversion

rates and sale volumes. Sequentially, we give special suggestions according to 7

features selected by RF, respectively, such as redesigning the website, sending

additional advertisements and so on.

However, machine learning models in this project are trained through data from the

same source (only during one year). This means that the data used are consistent but

influence the generalizability of models. Following that, we consider collecting more

customer behavior data within several years since economic and technological

environment changes brings noises to the data.

References

[1] Sakar, C. O., Polat, S. O., Katircioglu, M., & Kastro, Y. (2019). Real-time prediction of online

shoppers’ purchasing intention using multilayer perceptron and LSTM recurrent neural networks. Neural

Computing and Applications, 31(10), 6893-6908.

[2] Peng, H., Long, F., & Ding, C. (2005). Feature selection based on mutual information: criteria of

max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis &

Machine Intelligence, (8), 1226-1238.

