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1. Motivation and purpose  

Owing to the lower level of sale volumes of the washing machine on the Internet 

last year, the manager of the marketing department in ABC household electric appliance 

company requires us to put forward solutions to elevate the level of sales volume. To 

achieve this, we analyze the buying behaviors of customers, predict the purchasing 

intention, find out the root causes of low sales rate and the opportunities of 

improvement, and apply the marketing methods to increase the purchasing intention by 

collecting and analyzing all the information about customers’ activities on the related 

shopping websites. 

2. Dataset description 

In our project, the purchasing intention model is designed as a binary classification 

problem measuring the user’s intention to finalize the transaction. The dataset consists 

of feature vectors belonging to 12,330 sessions [1]. The dataset was formed so that each 

session would belong to a different user in a 1-year period to avoid any tendency to a 

specific campaign, special day, user profile, or period. Of the 12,330 sessions in the 

dataset, 84.5% (10,422) were negative class samples that did not end with shopping, 

and the rest (1908) were positive class samples ending with shopping. The dataset used 

for model training contains 18 features, including Administrative, Administrative, 

Duration, Informational, Informational duration, Product Related, Product Related, 

Duration, Bounce rates, Exit Rates, Page Values, Special Day, Month, Operating 

systems, Browser, Region, Traffic type, Visitor type, Weekend, Revenue. A detailed 

introduction is shown in Table 1 and Table 2.  

 

Table 1. Part 1 of dataset description 

Feature name Feature description Min 

value 

Max 

value 

SD 

Administrative Number of pages visited by the visitor about 

account management 

0 27 3.32 

Administrative 

duration 

Total amount of time (in seconds) spent by the 

visitor on account management related pages 

0 3398 176.70 

Informational Number of pages visited by the visitor about 

Web site, communication and address 

information of the shopping site 

0 24 1.26 

Informational 

duration 

Total amount of time (in seconds) spent by the 

visitor on information pages 

0 2549 140.64 

Product 

Related 

Number of pages visited by visitor about 

product related pages 

0 705 44.45 



Product 

Related 

duration 

Total amount of time (in seconds) spent by the 

visitor on product related pages 

0 63973 1912.25 

Bounce rate Average bounce rate value of the pages visited 

by visitor 

0 0.2 0.04 

Exit rate Average exit rate value of pages visited by 

visitor 

0 0.2 0.05 

Page value Average page value of the pages visited by the 

visitor 

0 361 18.55 

Special day Closeness of the site visiting time to a special 

day 

0 1.0 0.19 

Table 2. Part 2 of dataset description 

Feature name Feature description Number of categorical 

values 

Operating 

Systems 

Operating system of the visitor 8 

Browser Browser of the visitor 13 

Region Geographic region from which the session has 

been started by the visitor 

9 

Traffic Type Traffic source by which the visitor has arrived at 

the Web site (e.g., banner, SMS, direct) 

20 

Visitor Type Visitor type as “New Visitor,” ”Returning 

Visitor,” and “Other” 

3 

Weekend Boolean value indicating whether the date of the 

visit is weekend 

2 

Month Month value of the visit date 12 

Revenue Class label indicating whether the visit has been 

finalized with a transaction 

2 

 

3. Oversampling 

When implementing classification algorithms, the structure of the data is of great 

significance. Specifically, the balance between the number of observations for each 

potential output heavily influences the prediction’s performance. Trying to make 

predictions with regards to a minority class, we use SMOTE which is a technique based 

on nearest neighbors to make the number of observations balanced.  

SMOTE is a technique based on nearest neighbors judged by Euclidean Distance 

between data points in feature space. It has four steps for implementations: 



Step 1. For each minority instance, k number of nearest neighbors are found such 

that they also belong to the same class where k=SMOTE%/100.  

Step 2. The difference between the feature vector of the considered instance and the 

feature vectors of the k nearest neighbors are found. As a consequence, k number of 

difference vectors are obtained. 

Step 3. The k difference vectors are each multiplied by a random number between 

0 and 1 (excluding 0 and 1). 

Step4. The difference vectors, after being multiplied by random numbers, are added 

to the feature vector of the considered instance (original minority instance) at each 

iteration. (See code in Fig. 1) 

Since the dataset is created by selecting multiple instances of the minority class 

more than once, first oversampling the dataset and then dividing it into training and test 

sets may lead to biased results due to the possibility that the same minority class may 

be used both for training and testing. For this reason, in this project, 30% (3699) of the 

dataset consisting of 12330 samples is first left out for testing and the oversampling 

method is applied to the remaining 70% (8631) of the samples. 

Figure 1. The code of oversampling-SMOTE. 

 

 
Before oversampling, the number of class 0 is 1286 and 7345 of class 1; after 

oversampling, the number of class 0 and class 1 are both 7345. (See Fig. 2 and Fig. 3) 

 

 Figure 2. Before oversampling     Figure 3. After oversampling 



4. Feature Selection 

 The two biggest problems in machine learning are overfitting (in terms of fitting 

data that cannot be generalized outside the data set) and dimensional disasters (non-

intuitive and sparse in high-dimensional data). By reducing the number of features in 

the model and trying to optimize model performance, feature selection helps avoid these 

two problems. In this way, feature selection provides an additional benefit: model 

interpretation. With fewer features, the output model becomes simpler and easier to 

interpret, and makes it easier to trust the predictions made by the model. 

In this section, we use the feature selection method to filter out important features 

to further improve the classification performance of MLP, SVM, RNN, and CNN 

algorithms. Besides, because using fewer features to achieve better or similar 

classification results will also improve the scalability of the real-time online shopper 

behavior analysis system. Another method for feature selection is to use feature 

extraction (such as principal component analysis) for dimensionality reduction. 

However, in this case, the features in the reduced space will be a linear combination of 

17 attributes, which requires tracking all features during the visit and updating the 

feature vector after the visitor takes a new operation. Therefore, it is considered 

appropriate to use feature selection instead of feature extraction within the scope of this 

study. 

For feature ranking, we tend to apply filter-based feature selection and wrapper 

algorithms. The difference between the two methods is that the wrapper algorithm 

requires a learning algorithm to obtain a simplified feature set for a specific classifier. 

Here, we use correlation, minimum redundancy maximum relevance (mRMR) filters 

and a wrapper method—random forest (RF) for feature selection. 

4.1 Correlation 

 This method filters and obtains only a subset of the relevant features. The filtering 

here is done using a correlation matrix, which is usually done using Pearson Correlation. 

Here, we first draw a Pearson Correlation heat map (shown in Fig. 4) and look at the 

correlation between the independent variable and the output variable MEDV. We only 

select features that have a correlation with the output variable greater than 0.09 (taken 

as an absolute value). In correlation matrix, the value of the correlation coefficient is 

between -1 and 1: a value close to 0 indicates weak correlation (exact 0 means no 

correlation), a value close to 1 means strong positive correlation, and a value close to -

1 means strong negative correlation. 

4.2 mRMR 

 Unlike Correlation, a univariate filter method, mRMR is a multivariate filter 

method, which is heuristic and can be used along with other methods (such as the 



wrapper method). mRMR can use mutual information, correlation or distance/similarity 

scores to select features. Its goal is to punish the relevance of features by their 

redundancy in the presence of other selected features. We use the mRMR software 

package provided by Peng et al. [1] to implement feature selection and select 9 

important features. 

4.3 Random Forest 

In data science work, RF is a commonly used feature selection method. The idea 

of feature importance evaluation is to see how much each feature contributes to each 

tree in a random forest, then take an average, and finally, the ratio of the contributions 

between features is compared. Contribution can usually be measured using the Gini 

index or OOB error rate as an evaluation indicator. In this project, we call 

“RandomForestClassifier ()” in the scikit-learn random forest class library to filter and 

sort the features. The results are shown in Fig. 5. The most important feature shown is 

the eighth feature, "PageValues". 

 

 

 
Figure 4. Pearson correlation heat map 

 



 

Figure 5. Feature selection ranking results from RF 

 

According to the above three feature selection methods, Table 3 summaries the 

ranking of the features selected from different methods. 

 

Table 3. Feature ranking 

Rank

-ing 

Filter-based feature selection Wrapper method 

Correlation mRMR RF 

1 PageValues ProductRelated_Duration PageValues 

2 ExitRates ExitRates ExitRates 

3 ProductRelated BounceRates ProductRelated 

4 ProductRelated_Duration SpecialDay ProductRelated_Duration 

5 BounceRate VisitorType BounceRate 

6 Administrative Weekend Administrative 

7 VisitorType PageValues Month 

8 Informational OperatingSystems Administrative_Duration 

9 Administrative_Duration Informational TrafficType 

10 SpecialDay Month Region 

11 Month Region Browser 

12 Informational_Duration Browser OperatingSystems 

13 Weekend Administrative Informational 

14 Browser TrafficType Informational_Duration 

15 OperatingSystems Informational_Duration Weekend 

16 Region ProductRelated VisitorType 

17 TrafficType Administrative_Duration SpecialDay 

 



5. Prediction of online shoppers’ purchasing intention 

5.1 Multilayer perceptron (MLP) 

5.1.1 MLP definition  

  Subsequent work with multilayer perceptrons has shown that they are capable of 

approximating an XOR operator as well as many other non-linear functions. A 

multilayer perceptron is a class of feedforward artificial neural network. It consists of 

at least three layers of nodes: an input layer, a hidden layer, and an output layer. Except 

for the input nodes, each node is a neuron that uses a nonlinear activation function.  

  There are three common activation functions: sigmoids, hyperbolic tangent, and 

rectifier linear unit(ReLU). In recent developments of deep learning, ReLU is used 

more frequently as one of the possible ways to overcome the numerical problems 

related to the sigmoids. As a consequence, we use ReLU as the activation function in 

our MLP model. 

  Moreover, we are always looking to optimize model performance mostly by reducing 

the cost function associated with the model. There are several optimization algorithms 

that can help us improve model performance, including AdaGrad, RMSProp, and Adam, 

etc. In this project, we use Adam as the optimizer in the MLP model for some reasons. 

First, it’s quite computationally efficient; second, it works well with large data sets and 

large parameters. What’s more, it requires little memory space. 

5.1.2 Parameter Setting 

  Under the condition of both reducing loss and increasing accuracy, we set different 

numbers of neurons and numbers of hidden layers with different feature selection 

methods, denormalized, and normalized dataset. For example, 

hideen_layer_sizes=(27,50) represents 27 neurons in first hidden layer and 50 neurons 

in second layer respectively. Under the circumstance, the loss is reduced to 0.298. Either 

adding or reducing a hidden layer will lead to greater loss. Fig. 6 gives the python code. 

 

 

Figure 6. MLP model 



5.1.3 Experiment Results 

The accuracy of the MLP model using an accuracy score from sklearn with four 

feature selection methods is shown in Table 4. 

Table 4. MLP experiment results 

 All Features Correlation mRMR RF 

After normalized 0.862 0.866 0.860 0.867 

Before normalized 0.875 0.702 0.873 0.875 

We can find out that the accuracy obtained with mRMR and the normalized dataset 

is the worst (0.86). With the denormalized dataset, the accuracy obtained with 

correlation is only 0.702. Overall, RF has greater performance; especially with 10 

features, the accuracy can be up to 0.87. As a consequence, we recommend use RF as 

feature selection methods with the MLP model. 

5.2 Support Vector Machines (SVM) 

5.2.1 Principle of SVM 

SVM, an algorithm used for classification, is proposed by Vapnik and his colleagues 

according to statistical learning theory. SVM shows many advantages in solving the 

problems of the small sample and high-dimensional mode discrimination. SVM has 

been used in many practical problems like handwriting recognition, three-dimension 

target recognition, face recognition, and image classification. 

In simple terms, the concept of SVM is to use the principle of the minimization of 

statistical risk to find a hyperplane to separate the two different sets and to maximize 

the margin between the two classes. For example, in two-dimensional space, the 

features are height and weight in Fig. 7. We want to classify all the data points to boys 

and girls. Since the data in this figure is not mixed together, they can be classified 

perfectly, and we called this situation hard-margin SVM. In the mathematical formula, 

boys（𝑦௜ = 1）should satisfy  𝑤்𝑥 + 𝑏 ≥ 1 and girls（𝑦௜ = −1）should satisfy 𝑤்𝑥 +

𝑏 ≤ −1 simultaneously. The goal of the SVM method is to find the hyperplane which can 

separate the two classes, and make the margins as bigger as possible. 

 

Figure 7. Hard-margin SVM 



 

In reality, data is unlikely classified perfectly, so during the training process, some 

data can be tolerated to fall into the margins like the Fig. 8. shows, this situation we 

called soft-margin SVM. 

 
Figure 8. Soft-margin SVM 

 

The method of tolerating the bias data is described below. For example, the lowest 

blue cross should fall within the range of 𝑤்𝑥 + 𝑏 ≥ 1 theoretically, but due to the 

tolerance, the blue cross fall within the range of 𝑤்𝑥 + 𝑏 ≤ 1. To match this problem, 

we only need to subtract a value from the original right formula, and this value called 

slack variable（ε）, the parameter which tolerates data falling within margins. The bigger 

the value, the bigger the tolerant range. 

If we want to obtain a perfect classified consequence, the choice of kernel function 

becomes very important. Kernel function can solve the problems when the data in 

different classes can’t be linearly separated in the original dimension by the method of 

non-linear projection to higher-dimensional space. 

 

Figure 9. Map original space to higher dimension space 

The original data can be separated into two classes by a hyperplane perfectly if it 

can be projected to a higher dimensional space called Hillbert space（H）in Fig. 9. The 

formula of projection is difficult designed, so we can use kernel function to help 

interpret it. The definition of kernel function is below, for all data, if a function can 

satisfy k(x, y) =< φ(x), φ(y) > k （ x, y ） is a kernel function, the content in the 

parenthesis is vector dot product, the model structure is showed in Fig. 10. 

 



 

Figure 10. SVM model structure  

 

5.2.2 SVM model construction 

In the project, we first use a method called smote to obtain oversampling data to 

deal with the problem of the unbalanced dataset. Second, we use three methods contains 

random forest, correlation, and mRMR to select the important features for data 

processing. Then, we use SVM to predict whether the users on the Internet will buy the 

products or not. The consequence can be classified into two classes: buy it and do 

nothing. 

Above is the python code we used. We use pandas to read the dataset and separate 

the column “Revenue” from other columns to be the predicted consequence. Then we 

use a python package called train test split whose main function is to divide the data 

into training and testing sets randomly. In this case, our training set is 70%, and the 

testing set is 30%. After this step, we use another package called SVC, and the kernel 

is RBF to train the model. Finally, we print the confusion matrix which contains the 

information about accuracy showed in Fig. 11. 

 

Figure 11. Confusion matrix 



 

A confusion matrix is a table that is often used to describe the performance of a 

classification model (or "classifier") on a set of test data for which the true values are 

known. TP are cases in which we predicted yes, and they do. TN is which we predicted 

no, and they don't. FP is which we predicted yes, but they don't actually are. (Also 

known as a "Type I error"). FN is which we predicted no, but they actually do. (Also 

known as a "Type II error"). Precision is used to evaluate when we predict yes, how 

often it’s correct, and recall is when it’s actually yes, how often does the model predict 

yes. Accuracy is overall, how often the classifier is correct. F1-score is a weighted 

average of recall and precision. 

5.2.3 Experiment analysis of SVM 

We combine four feature selection results（all data, extra tree, random forest, 

correlation, and mRMR）with four data processing methods（do nothing, normalization 

plus oversampling, denormalization but oversampling, normalization but no 

oversampling）. The training and testing sets are divided by the proportion of 70%:30% 

and 80%:20%. From Table 5, we can find that the proportions of the two sets in this 

setting have similar results, so both proportions can be adopted. Between the data is 

normalized or not, the former one has better prediction accuracy in classification using 

the SVM method. However, the comparison of the original data and the oversampling 

data, we can find that using the original data to train the model can obtain better results. 

Table 5 gives the combination results. 

 

Table 5. Experiment results of SVM 

Data processing Accuracy 

train70% test30% All Features Correlation mRMR RF 

After normalized 0.85 0.83 0.84 0.84 

After normalized 0.86 0.88 0.88 0.88 

Before normalized 0.73 0.73 0.85 0.76 

Before normalized 0.84 0.85 0.84 0.85 

train80% test20% All Features Correlation mRMR RF 

After normalized 0.86 0.84 0.85 0.85 

After normalized 0.88 0.89 0.87 0.88 

Before normalized 0.74 0.75 0.84 0.76 

Before normalized 0.85 0.83 0.84 0.82 

Data processing F1-score   

train70% test30% All Features Correlation mRMR RF 

After normalized 0.874 0.873 0.857 0.877 



After normalized 0.929 0.932 0.932 0.935 

Before normalized 0.807 0.819 0.805 0.860 

Before normalized 0.920 0.914 0.917 0.910 

train80% test20% All Features Correlation mRMR RF 

After normalized 0.882 0.876 0.864 0.874 

After normalized 0.936 0.930 0.933 0.936 

Before normalized 0.809 0.830 0.811 0.861 

Before normalized 0.918 0.912 0.917 0.921 

5.3 RNN & CNN 

 In this section, we focus on recurrent neural networks (RNN) and convolutional 

neural networks (CNN) in further data processing, model construction, model 

performance improvement, training, and testing. 

5.3.1 Data processing for RNN & CNN 

 In order to make the data suitable for using RNN and CNN models, this section 

deletes the feature "Browser" according to the feature selection results above to 

facilitate the conversion of the array data into grayscale images; then converts the 

oversampled data into 𝑚 ×  𝑛 grayscale images. The result is shown in Fig. 12~Fig. 

15. Finally, the picture data is normalized after divided by 255. 

 

Figure 12. Grayscale image with 16 features 

 

Figure 13. Grayscale image with 9 features selected by Pearson correlation 



 

Figure 14. Grayscale image with 9 features by mRMR 

 
Figure 15. Grayscale image with 7 features selected by RF 

5.3.2 Model architecture of RNN & CNN  

 The RNN and CNN model structures are shown in Fig. 16 and Fig. 17. Taking 

RNN as an example, the hyperparameters in the model are combined to obtain the 

optimal parameter setting level. The control variable method is used to adjust the 

parameters and perform experiments. We can see Table 6 for all the experimental results. 

As can be seen from the table, when the parameters of the RNN model are set to the 

parameter values of the bold part, the accuracy of the model prediction is the highest; 

the performance improvement method of the CNN model is the same, and will not be 

repeated here.  

5.3.3 Training and testing for RNN &CNN 

 Fig. 18 and Fig. 19 give the program codes for RNN and CNN training. The 

number of training iterations is set to 20. The ratio of the training set to the test set of 

both models is 7: 3; RNN randomly extracts 20% of the data from the training set as 

the verification set, and CNN randomly extracts 12% of the training set as the 

verification set. The batch size of RNN training is set to 16 and that of CNN training is 

32. The RNN monitors the value of "val_loss" during training and automatically 

reduces the learning rate to avoid falling into a bottleneck. The performance of RNN 

and CNN models with different features is shown in Table 7. There is a total of 8 

experiments. 



 

Figure 16. RNN model structure 

 

Figure 17. CNN model structure 

 

Table 6. RNN model parameter settings and experimental results 

Experiment No. 

 
 

1 2 3 4 5 6 7 8 

SimpleRNN 
Layer Number 1 1 1 1 1 1 1 2 

Neuron Number 32 32 32 32 32 32 32 32/16 

Other Algorithms (Layers，Neuro Number) 0 0 0 0 0 0 LSTM(1, 16) 0 

Dense 

Layer Number 2 2 2 2 2 2 2 2 

Neuron Number 128/64 128/64 128/64 128/64 128/64 128/64 128/64 128/64 

Activation Function relu sigmoid sigmoid sigmoid sigmoid sigmoid sigmoid sigmoid 

Output Layer Activation Function softmax softmax softmax softmax softmax softmax softmax softmax 

Learning Rate 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

Optimizer Adam Adam SGD RMSProp AdaGrad Adamax Adam Adam 

Batch_size 16 16 16 16 16 16 16 16 

Epoch 20 20 20 20 20 20 20 20 

Accuracy 
1th run 0.87051 0.87456 0.84455 0.87186 0.76075 0.86699 0.87105 0.87321 

2th run 0.86753 0.87591 0.78021 0.86834 0.75994 0.86807 0.87213 0.87024 

 



 

Figure 18. RNN training program code

 

Figure 19. CNN training program code 

Table 7. The performance of RNN & CNN with different features 

 All Features  Correlation mRMR RF 

RNN 0.87537 0.87159 0.86780 0.87780 

CNN 0.86834 0.86834 0.85104 0.87672 

 

5.3.4 Generalizability of RNN & CNN model 

 According to overall experiment results (see code archive in the attachment), we 

can see that there is no overfitting in all trained models and the accuracy of the test set 

in RNN & CNN is higher than that of the training set and the validation set, reaching 

87.54% and 86.83% respectively. In addition, the accuracy for testing becomes a little 

better after the feature selection (87.78% for RNN and 87.67% for CNN). Thus, we 

conclude that both the models of RNN and CNN have a good generalizability. 

5.4 Comparison of experiment results  

 Table 8 shows the summary results of the above four model experiments. The 

results implicate that the SVM has the best performance after feature selection. 

Therefore, the SVM is the priority model to predict the on-line (real-time) shopping 

intention of customers. 

  

Table 8. Testing accuracy of four models 

 All Features  Correlation mRMR RF 

MLP 0.862 0.866 0.860 0.867 

SVM 0.860 0.880 0.880 0.880 

RNN 0.875 0.872 0.868 0.878 

CNN 0.868 0.868 0.851 0.877 



6. Solutions for improving sale volumes  

To achieve the sale goal (increase volumes by 20%), our website of the washing 

machine is designed to automatically offer content during a visit if the user is likely to 

abandon the site without shopping but predicted shopping intention is high. In other 

words, we apply our SVM model to predict purchasing intention after the website 

abandonment likelihood is more than a threshold and trigger the website to offer content 

for target customers, which imitate the behavior of a salesperson in the virtual shopping 

environment. In this way, we can timely take actions accordingly to improve the 

shopping cart abandonment and purchase conversion rates.  

Besides, from the RF method, we can find the most important features including 

“PageValues”, “ExitRates”, “BounceRate”, “Month”, “ProductRelated”, 

“ProductRelated_Duration”, and “Administrative” in our dataset. Therefore, we try to 

propose some suggestions to improve the sales rate based on that. Both high 

“BounceRate” and “ExitRates” can represent an inappropriate design of the landing 

page and other pages of the website, so we need to redesign the content or the 

typesetting of the whole website to attract more customers. If the value of 

“ProductRelated” or “ProductRelated_Duration” is on the high side, it can represent 

that customers are interested in our products or they are hesitating. At this moment, we 

can encourage the customers to make the orders by sending additional advertisements 

or discounts automatically. Through the “Month” data, we can see that the sales rate is 

totally different from the slack season and peak season. So, our company can launch 

promotional activities to increase the sales rate in the slack season. All in all, we want 

to increase sales by about 20% to reach our target by the implementation of the above 

methods. 

7. Conclusion and future work 

In this project, we firstly construct a real-time purchasing intention prediction 

system for the virtual shopping environment, using aggregated pageview data kept track 

during the visit along with user information as input to machine learning algorithms. 

Besides, we apply oversampling and feature selection preprocessing techniques to 

improve the success rates and scalability of the algorithms and find out significant 

factors for purchasing intention. The experiments show that the SVM achieves the best 

results and the first 7 features selected by RF are important effect factors.  

Based on the above work, we provide several solutions for improving the sale 

volumes of washing machines. First of all, the SVM model is applied with website 

abandonment likelihood prediction system simultaneously to trigger offering content 

during a visit, which imitates salesperson so that it enhances the purchase conversion 

rates and sale volumes. Sequentially, we give special suggestions according to 7 



features selected by RF, respectively, such as redesigning the website, sending 

additional advertisements and so on. 

However, machine learning models in this project are trained through data from the 

same source (only during one year). This means that the data used are consistent but 

influence the generalizability of models. Following that, we consider collecting more 

customer behavior data within several years since economic and technological 

environment changes brings noises to the data.      
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