

基於深度學習神經網路於心臟病確診分類之應用

指導老師:邱銘傳 教授 組別:Group 8

學生:陳譽升 109034538

Agenda

02 資料探索與前處理

03 模型建立與超參數優化

04 模型評估與比較

05 結論與未來展望

背景-心臟病確診預測

於成本控制的考量下提供有品質的醫療服務,而有品質的醫療服務意味者病患能正確地被確診,以及接受最洽當的治療方案

將個人生理資訊建立於資料庫,並透過建立模型預測來輔佐決策,以提升臨床醫療的正確性

心臟病確診

預測模型

年龄

性別

最高心跳數

血氧濃度

罹患心臟病

無罹患心臟病

心臟不適之民眾與心臟病科醫生

WHEN

欲了解自身是否罹患心臟病時

WHERE

醫院及診所

心臟病預測模型研究流程

資料探索

- L)資料集讀取與解析
- (2)資料相關性分析
- (3)資料視覺化

資料前處理

- 4)類別型資料轉換
- **(5**)特徵篩選
- (6) 資料標準化
- (7) 資料切割

模型建立

- (8) NN 模型建立
- (9)超參數調整
- (0)模型評估與比較

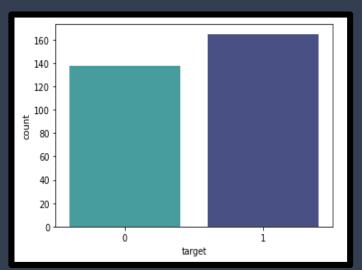
資料集說明

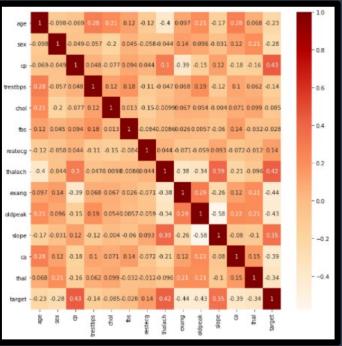
- 1. 使用 UCI Machine Learning Repository 心臟病預測資料庫
- 2. 數據共有303筆,14項變數
- 3. 目標應變數為:1為有心臟病、0為無心臟病
- 4. 右表為其資料表類別與屬性表
- 5. 經過 Python讀取資料後,發現並無任何遺 失值
- 6. 透過 Summary() 函式以及檢視各變數分佈 圖後,無特定變數具有離群值

Num.	Attribute Name	Description	Туре
1	age	The person's age in years	int
2	sex	The person's sex (1 = male, 0 = female)	Categorical
3	ср	The chest pain experienced (Value 1: typical angina, Value 2: atypical angina, Value 3: non-anginal pain, Value 4: asymptomatic)	Categorical
4	trestbps	The person's resting blood pressure (mm Hg on admission to the hospital)	int
5	chol	The person's cholesterol measurement in mg/dl	int
6	fbs	The person's fasting blood sugar (> 120 mg/dl, 1 = true; 0 = false)	Categorical
7	restecg	Resting electrocardiographic measurement (0 = normal, 1 = having ST-T wave abnormality, 2 = showing probable or definite left ventricular hypertrophy by Estes' criteria)	Categorical
8	thalach	The person's maximum heart rate achieved	int
9	exang	Exercise induced angina (1 = yes; 0 = no)	Categorical
10	oldpeak	ST depression induced by exercise relative to rest	numeric
11	slope	the slope of the peak exercise ST segment (Value 1: upsloping, Value 2: flat, Value 3: downsloping)	Categorical
12	ca	The number of major vessels (0-3)	int
13	thal	A blood disorder called thalassemia (3 = normal; 6 = fixed defect; 7 = reversable defect)	Categorical
14	target	Heart disease (0 = no, 1 = yes)	Categorical

資料視覺化

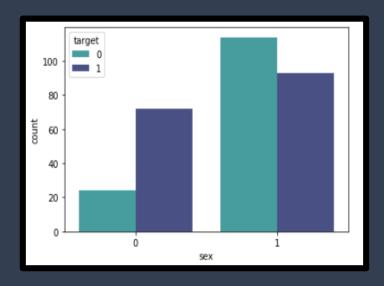
- 主要在於理解變數間關係,提供實務上的理解 以及建立模型的特徵選取
- 2. 確診心臟病有165人、無心臟病有138人
- 3. 確診者比例占總體之54.46%
- 4. 從中挑選相關性較大的變數依序為:exang、cp、thalach
- 5. 亦可發現變數:chol、fbs與目標變數之相關性較大

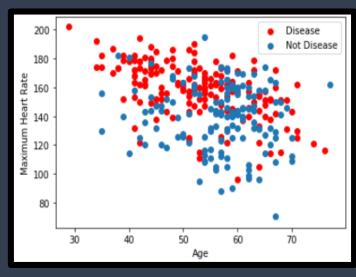




探索資料

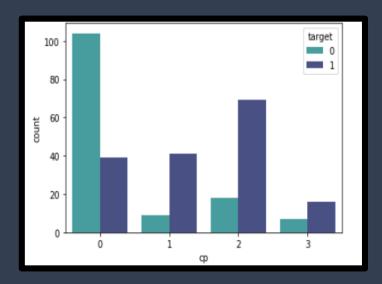
- 將性別與目標函數進行比對,可發現女性確診 的人數雖然較少,但比例卻明顯高於男性
- 2. 年齡也確實會影響心臟病確診的機率,年齡越輕,其確診的比例越高
- 3. 發現最高心跳數與年齡略為負相關,但其最高 心跳數的變數(thalach)將心臟病是否確診的 資料拆成上下兩部分,故猜測其可能具有較強 的分類能力

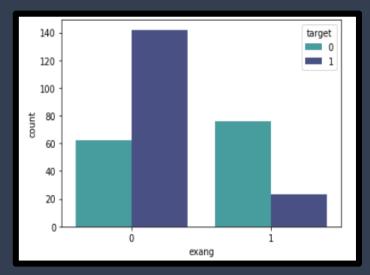




探索資料 (Cont.)

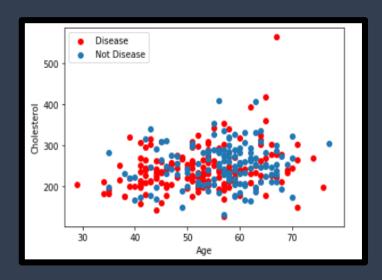
- 3. 與目標變數相關性最高的 cp、exang,其兩者皆可觀察到會成為影響確診的關鍵變數,其在 cp(胸痛)中
- 4. 在 exang 中則是 exang = 1 (具 Exercise Induced Angina) 時,有較高比例並非心臟病

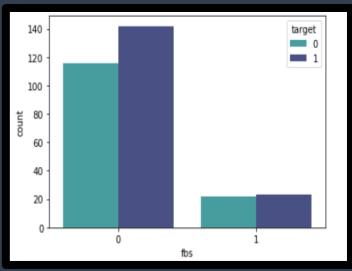




探索資料 (Cont.)

- 5. 在chol (膽固醇) 數值高低並無將是否確診資料進 行明顯區分,故後續預測模型中不將其納入模型
- 6. 在fbs(空腹血糖數值)中,不論數值是否大於 120,心臟病確診者比例並沒有太大之差異,因 此亦顯示其與目標函數間並沒有顯著相關,亦不 將fbs放入預測模型
- 7. 透過上述方法降低Overfitting發生可能性





資料前處理 step 1 & 2

類別型變數資料轉換

為使類別型變數於資料標準化後具有 代表性,將類別型變數如:cp、thal、 slope等轉換為Dummy Variable

```
#將各類別轉換為 Dummy Variables
a = pd.get_dummies(df['cp'], prefix = "cp")
b = pd.get_dummies(df['thal'], prefix = "thal")
c = pd.get dummies(df['slope'], prefix = "slope")
frames = [df, a, b, c]
df = pd.concat(frames, axis = 1)
df.head()
```

資料特徵篩選

將原始類別型變數欄位與目標函數相關性較小 之變數:fbs、chol 刪除

```
df = df.drop(columns = ['cp','thal','slope','fbs','chol'])
df.head()
```

	age	sex	trestbps	restecg	thalach	exang	oldpeak	ca	target	cp_0	cp_1	cp_2	cp_3	thal_0	thal_1	thal_2	thal_3	slope_0	slope_1	
0	63	1	145	0	150	0	2.3	0	1	0	0	0	1	0	1	0	0	1	0	
1	37	1	130	1	187	0	3.5	0	1	0	0	1	0	0	0	1	0	1	0	
2	41	0	130	0	172	0	1.4	0	1	0	1	0	0							
3	56	1	120	1	178	0	0.8	0	1	0	1	0	0		1		77=	C 4L-1	⊢ 	
4	57	0	120	1	163	1	0.6	0	1	1	0	0	0	п		_5	儿	钉	了住	4

1項目標變數

資料前處理 step 3 & 4

資料標準化與切割

將資料進行標準化處理,以供模型使用

隨機切割為訓練集(Training)、測試集(Testing Data),切割比例為7:3

	age	sex	trestbps	restecg	thalach	exang	oldpeak	ca	ср_0	ср_1	cp_2	cp_3	thal_0	thal_1	tł
0	0.950624	0.679881	0.762694	-1.004171	0.015417	-0.69548	1.085542	-0.713249	-0.943822	-0.443820	-0.633600	3.483351	-0.081379	3.972541	-1.09
1	-1.912150	0.679881	-0.092585	0.897478	1.630774	-0.69548	2.119067	-0.713249	-0.943822	-0.443820	1.573075	-0.286132	-0.081379	-0.250897	0.90
2	-1.471723	-1.465992	-0.092585	-1.004171	0.975900	-0.69548	0.310399	-0.713249	-0.943822	2.245729	-0.633600	-0.286132	-0.081379	-0.250897	0.90
3	0.179877	0.679881	-0.662770	0.897478	1.237849	-0.69548	-0.206364	-0.713249	-0.943822	2.245729	-0.633600	-0.286132	-0.081379	-0.250897	0.90
4	0.289984	-1.465992	-0.662770	0.897478	0.582975	1.43311	-0.378618	-0.713249	1.056025	-0.443820	-0.633600	-0.286132	-0.081379	-0.250897	0.90

神經網路預測模型 Original Model

```
model_1 = Sequential()
model_1.add(Dense(32, input_dim=19, kernel_initializer='normal', activation='relu'))
model_1.add(Dropout(0.25))
model_1.add(Dense(16, kernel_initializer='normal', activation='relu'))
model_1.add(Dropout(0.25))
model_1.add(Dense(2, activation='softmax'))

# compile model
Adam(lr=0.01)
model_1.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model_1.summary()
history_1=model_1.fit(x_train, y_train, validation_data=(x_test, y_test),epochs=50, batch_size=10)
```

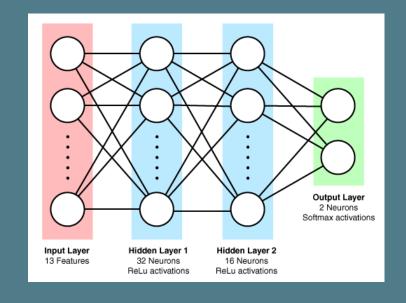
Activation Function

- Hidden Layer : ReLu
- Output Layer : Softmax

Loss Function

sparse_categorical_crossentropy

None, 32)	640
	040
None, 32)	0
None, 16)	528
None, 16)	0
None, 2)	34
	None, 16)



kernel_initializer

- normal

Learning Rate

- Adam / 0.01

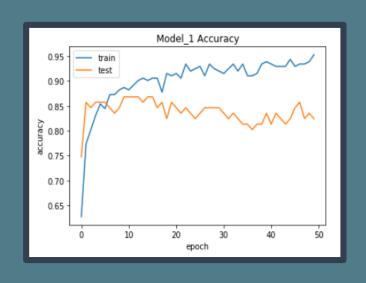
Epochs

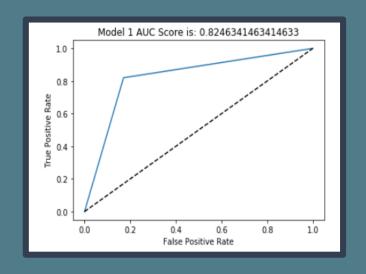
- 50

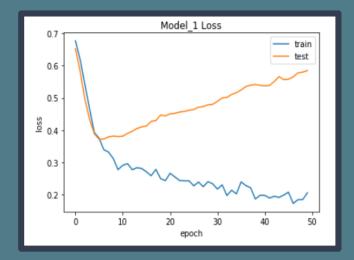
Batch Size

-10

神經網路預測模型 Original Model







Testing Acc / AUC 82.42% / 0.8246

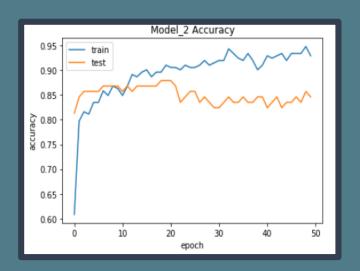
Overfitting 超參數優化

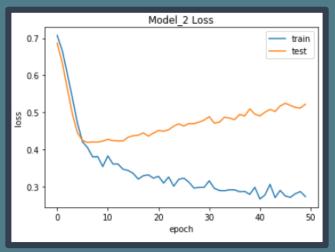
超參數調整 by增加kernel Regularizer

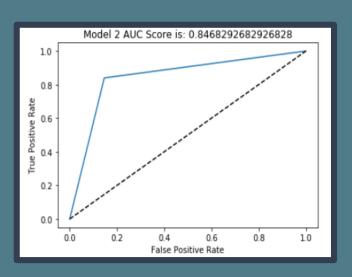
```
#增加kernal regularizer
model_2 = Sequential()
model_2.add(Dense(32, input_dim=19, kernel_initializer='normal', kernel_regularizer=regularizers.12(0.01), activation='relu'))
model_2.add(Dropout(0.25))
model_2.add(Dense(16, kernel_initializer='normal', kernel_regularizer=regularizers.12(0.01), activation='relu'))
model_2.add(Dropout(0.25))
model_2.add(Dense(2, activation='softmax'))

# compile model
Adam(1r=0.01)
model_2.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model_2.summary()
```

L2 kernel regularizer 設定為0.01,得以讓神經元權重正規化,於權重矩陣加入懲罰性函數,以防止過擬合問題







Testing Acc - 84.62%

AUC

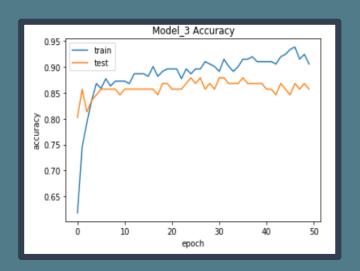
- 0.8468

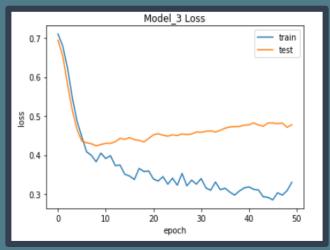
超參數調整 by 調整 Activation = sigmoid

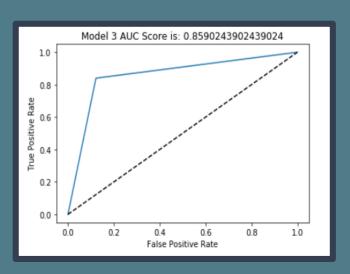
```
# Activation Function 更改為 sigmoid,適合用於二分類
model_3 = Sequential()
model_3.add(Dense(32, input_dim=19, kernel_initializer='normal',kernel_regularizer=regularizers.12(0.01), activation='relu'))
model_3.add(Dropout(0.25))
model_3.add(Dense(16, kernel_initializer='normal',kernel_regularizer=regularizers.12(0.01), activation='relu'))
model_3.add(Dropout(0.25))
model_3.add(Dense(2, activation='sigmoid'))

# compile model
Adam(lr=0.01)
model_3.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model_3.summary()
```

將輸出層之 Activation Function 更改為sigmoid, 更有效進行二分類預測問題



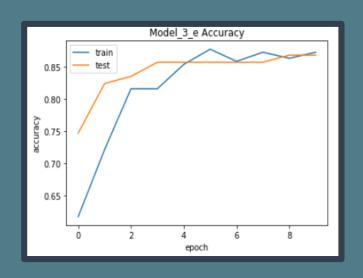


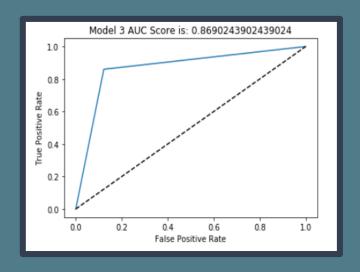


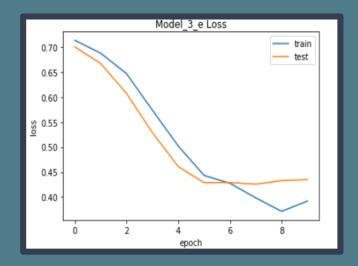
Testing Acc - 85.71%

AUC - 0.8590

超參數調整 by 調整 Epochs = 10







Testing Acc / AUC 86.81% / 0.8690

經由上述三個預測模型, 皆可發現當 epochs 大於 10 時,loss 都會隨之上升, 因此為直接防止過擬合, 將epochs 下修為 10

超參數調整 by 調整其他超參數

Learning Rate (0.1/0.01)

除在收斂速度上有差別外,對於學習成效 沒有太大的影響,

當Learning Rate=0.001時, Testing Accuracy與AUC成效表現較差

	Training	Testing	AUC
0.1	0.8820	0.8681	0.8690
0.01	0.8773	0.8681	0.8690
0.001	0.8762	0.8461	0.8468

Batch Size (5/10/15)

當Batch Size =15時結果相對較差, 當Batch Size =5與10時,結果沒有任何差 異,因此持續選用Batch Size=10,使學 習模型可以更加穩定

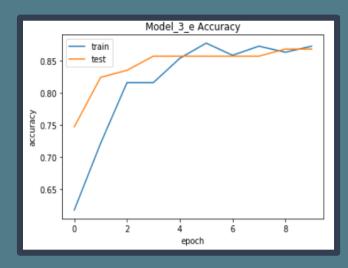
	Training	Testing	AUC
5	0.8915	0.8681	0.8690
10	0.8773	0.8681	0.8690
15	0.8679	0.8571	0.8590

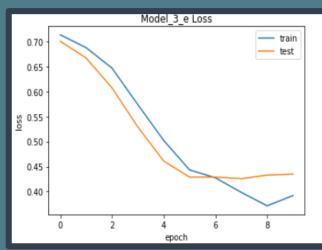
模型評估與比較 Final Model Evaluation

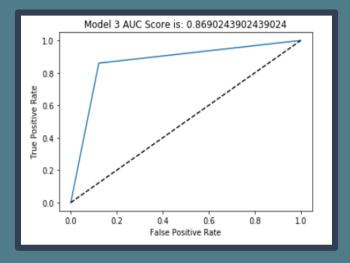
Final Model

- 1. 增加 Kernel Regularizer
- 2. Activation = sigmoid
- 3. Epochs = 10
- 4. Learning Rate = 0.01
- 5. Batch Size = **10**
- 6. Kernel Regularizer = 0.01

Testing Accuracy = 86.81% AUC = 0.8690







模型評估與比較 by compare with ML models

建立機器學習演算法

- -Logistic Regression
- -Random Forest

以評估深度學習模型之效度

訓練模型	Testing Acc	AUC
Logistic Regression	0.8351	0.8357
Random Forest	0.8241	0.8246
深度學習預測模型	0.8681	0.8690

```
# Sklearn Logistic Regression
lr = LogisticRegression()
lr.fit(x_train,y_train)
acc_lr_train = lr.score(x_train,y_train)
acc_lr_test = lr.score(x_test,y_test)
```

```
# Random Forest
rdf=RandomForestClassifier(n_estimators=10,criterion='entropy',random_state=38)
rdf.fit(x_train,y_train)
acc_rdf_train = rdf.score(x_train,y_train)
acc_rdf_test = rdf.score(x_test,y_test)
```

最終深度學習模型 有著最佳預測效果

結論與未來展望

年齡

性別

:

最高心跳數 血氧濃度 ...

心臟病確診預測 深度學習模型 罹患心臟病

無罹患心臟病

導入實際應用現 場獲取更多資料 提升模型穩定度 資料前處理與預 測模型超參數 不斷優化更新

精準醫療資料集 預測模型建立