


## 利用GaitPhase 資料進行步態速率分析



2021\_1 109034570 林溥鈞



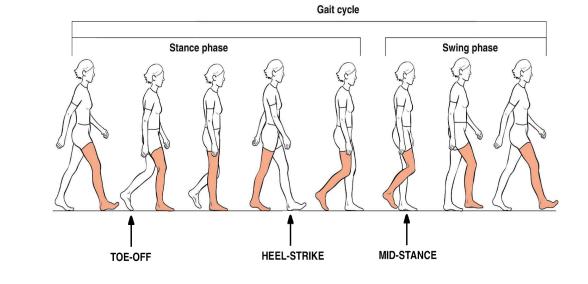


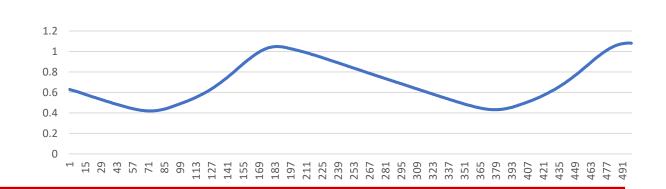
#### **Outline**

- 01 研究主題說明
- 02 資料前處理
- 03 預測模型設定
- 04 分析與模型效度驗證
- 05 結論與未來展望






# 01 研究主題說明






#### 研究動機

- Gait Cycle 每個人都有獨特的走路頻率
- 步態人體特徵
  - ▶ 週期性
  - ▶ 不變性 (外貌、形狀、顏色)
  - ➤ 獨特性
- 利用步態特徵進行辨識
  - ▶ 相同人--- 不同步態速率





0.7



#### **5W1H**



What 利用步態特徵的獨特性、不變化,週期性分辨不同步態速率

Why 有些細微變化是難以分辨的,又或是必須借助儀器才能分析,希望可以

透過AI的方式輔助分析,找出準確率高的辨識模型

Who 可以用在運動員、復健病患、跌倒老人

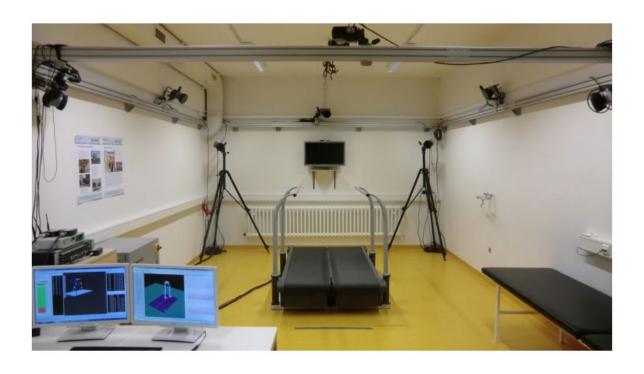
When 運動員在訓練時,病患在復健時

Where 實驗室、訓練室、醫院

How 利用分類模型、深度學習、資料分析






# 02 資料前處理

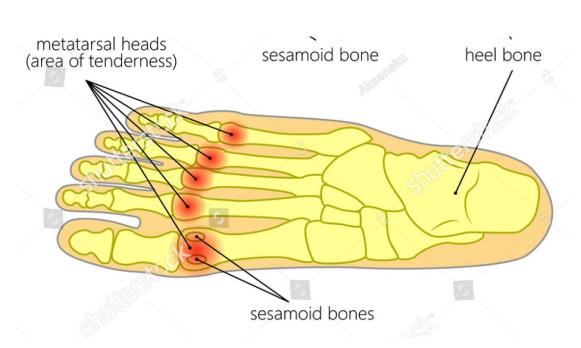




# 資料集介紹

| 受測者 | 21位                       |
|-----|---------------------------|
| 性別  | 10位男性、11位女性               |
| 年齡  | 23.8 yrs ±3.3 yrs         |
| 身高  | 172.8 cm ±9.4 cm,         |
| 體重  | 66.6 kg ±10.9 kg          |
| 速率  | [0.6, 1.7] m/s at 0.1 m/s |




3D marker positions (200HZ)





# 資料蒐集

#### 蹠骨









# 資料蒐集

```
#0.7資料
datasix1 = pd.read_csv("GP1_0.7_marker.csv")
datasix1.head()
```

|   | L_FCC_x  | L_FM1_x  | L_FM2_x  | L_FM5_x  | R_FCC_x  |
|---|----------|----------|----------|----------|----------|
| 0 | 0.628926 | 0.836563 | 0.840168 | 0.823058 | 0.888503 |
| 1 | 0.626188 | 0.833782 | 0.837441 | 0.820210 | 0.894769 |
| 2 | 0.623270 | 0.830821 | 0.834532 | 0.817181 | 0.901406 |
| 3 | 0.620190 | 0.827697 | 0.831457 | 0.813991 | 0.908358 |
| 4 | 0.616968 | 0.824431 | 0.828239 | 0.810662 | 0.915562 |

| 特徵24個 每一個有1200筆資料 |                                                       |  |  |
|-------------------|-------------------------------------------------------|--|--|
| 雙腳                | 左腳、右腳                                                 |  |  |
| Marker            | 1 · 2 · 5 · Achilles tendon                           |  |  |
| f. f              | x: posterior-anterior direction (前後方向)                |  |  |
| <b>3</b> 軸<br>    | y: right-left direction (左右方向)                        |  |  |
|                   | z: inferior superior (vertical) direction<br>(上下垂直方向) |  |  |





#### 資料合併

每個速率資料都是獨立csv檔 所以進行資料合併並分類命名 0、1

```
data1 = pd. DataFrame({'secim':np. zeros(12000)}
data2 = pd. DataFrame({'secim':np.ones(12000)})
data2 = pd. concat([dataseven2, data2], axis=1)
data1 = pd. concat([datasix1, data1], axis=1)
data = data1.append(data2,ignore_index=True)
data. head()
```





#### 資料分析

```
pip install pandas.profiling # 安裝profiling套件
```

```
import pandas_profiling as pp

##0.7

pro = pp.ProfileReport(datasix1)

pro.to_file('gait0.7_output.html') # 以網頁形式輸出
```

#### Overview

| Dataset statistics            |         | Variable types |    |
|-------------------------------|---------|----------------|----|
| Number of variables           | 24      | NUM            | 24 |
| Number of observations        | 12000   |                |    |
| Missing cells                 | 0       |                |    |
| Missing cells (%)             | 0.0%    |                |    |
| Duplicate rows                | 0       |                |    |
| Duplicate rows (%)            | 0.0%    |                |    |
| Total size in memory          | 2.2 MiB |                |    |
| Average record size in memory | 192.0 B |                |    |

#### Variables

| _FCC_x                                   | Distinct              | 11898          | Mean            | 0.7772775093             | II.                                    |
|------------------------------------------|-----------------------|----------------|-----------------|--------------------------|----------------------------------------|
| Real number (R≥0)                        | Distinct (%)          | 99.2%          | Minimum         | 0.354442                 | III III III III III III III III III II |
| HIGH CORRELATION                         | Missing               | 0              | Maximum         | 1.186256                 |                                        |
|                                          | Missing (%)           | 0.0%           | Zeros           | 0                        |                                        |
|                                          | Infinite              | 0              | Zeros (%)       | 0.0%                     |                                        |
|                                          | Infinite (%)          | 0.0%           | Memory size     | 93.8 KiB                 | 0, 00 00 10 13                         |
|                                          |                       |                |                 |                          | Toggle details                         |
|                                          |                       |                |                 |                          | Toggle details                         |
| _FM1_x                                   | Distinct              | 11927          | Mean            | 0.9648636276             | Toggle details                         |
| _FM1_X<br>Real number (R <sub>20</sub> ) | Distinct Distinct (%) | 11927<br>99.4% | Mean<br>Minimum | 0.9648636276<br>0.504261 | Toggle details                         |
|                                          |                       |                |                 |                          | Toggle details                         |
| Real number (R≥0)                        | Distinct (%)          | 99.4%          | Minimum         | 0.504261                 | Toggle details                         |





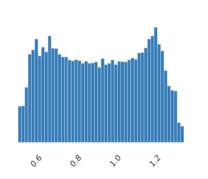
## 資料分析

L\_FM1\_x

Real number ( $\mathbb{R}_{\geq 0}$ )

HIGH CORRELATION

比較同一個marker點位資料


X軸 (前後) 資料必須呈現均勻

Z軸 (上下) 資料呈現偏態

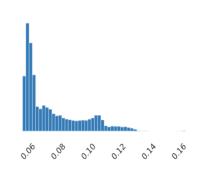
近一步確認資料正確性

| Distinct     | 11905 |
|--------------|-------|
| Distinct (%) | 99.2% |
| Missing      | 0     |
| Missing (%)  | 0.0%  |
| Infinite     | 0     |
| Infinite (%) | 0.0%  |

| Mean               | 0.916007043 |
|--------------------|-------------|
| Minimum            | 0.507758    |
| Maximum            | 1.343911    |
| Zeros              | 0           |
| Zeros (%)          | 0.0%        |
| Memory size        | 93.8 KiB    |
| Zeros<br>Zeros (%) | 0           |



Toggle details


L\_FM1\_z

Real number  $(\mathbb{R}_{\geq 0})$ 

HIGH CORRELATION

| Distinct     | 10103 |
|--------------|-------|
| Distinct (%) | 84.2% |
| Missing      | 0     |
| Missing (%)  | 0.0%  |
| Infinite     | 0     |
| Infinite (%) | 0.0%  |

| Mean        | 0.07608154675 |
|-------------|---------------|
| Minimum     | 0.056193      |
| Maximum     | 0.164298      |
| Zeros       | 0             |
| Zeros (%)   | 0.0%          |
| Memory size | 93.8 KiB      |



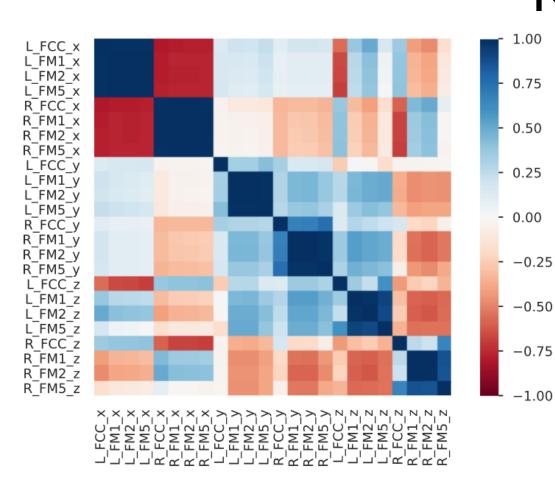


Toggle details



## 特徵選取

1.00


0.75

0.50

-0.50

-0.75

-1.00



| 不顯著特徵   |
|---------|
| L_FCC_y |
| R_FCC_y |
| L_FCC_z |
| R_FCC_z |
| L_FM5_z |

| 模型       | 準確率   | 決策       |
|----------|-------|----------|
| SVM 24特徵 | 0.915 | <b>\</b> |
| SVM 19特徵 | 0.761 |          |





#### 資料區分

Training 70% 16800



Testing 30% 7200

from sklearn.model\_selection import train\_test\_split
x\_train, x\_test, y\_train, y\_test = train\_test\_split(x, y, test\_size=0.3, random\_state=1)





### 03 預測模型設定

SVM Logistic regression XGBoost DNN





### 模型實驗流程

相同的人

不同速率

選擇0.7 、0.8 m/s



超參數調整

SVM

Logistic

XGBoost

DNN



選出最好的模型後

進行泛化能力測試



#### SVM 超參數調整



| 超參數          | 結果    | 超參數           | 結果    | 超參數           | 結果    | 超參數           | 結果    |
|--------------|-------|---------------|-------|---------------|-------|---------------|-------|
| C=1          |       | C=1           |       | C=100         |       | C=1000        |       |
| kernel='rbf' | 0.728 | kernel='rbf'  | 0.765 | kernel='rbf'  | 0.914 | kernel='rbf'  | 0.988 |
| gamma='auto' |       | gamma='scale' |       | gamma='scale' |       | gamma='scale' |       |

acc\_train of svm is : 0.9866071428571429 acc\_test of svm is : 0.988055555555556



# Logistic 超參數調整



| 超參數                | 結果    | 超參數                | 結果    | 超參數                        | 結果    | 超參數                | 結果    |
|--------------------|-------|--------------------|-------|----------------------------|-------|--------------------|-------|
| C=1                |       | C=1000             |       | C=1000                     |       | solver='liblinear' | 0.915 |
| solver='liblinear' | 0.721 | solver='liblinear' | 0.838 | solver='liblinear'         | 0.915 | solver='sag'       | 0.871 |
| max_iter=10        |       | max_iter=10        |       | max_iter= <mark>100</mark> |       | lbfgs              | 0.896 |
|                    |       |                    |       |                            |       | newton-cg          | 0.914 |

train accuracy for Log Regressin is 0.9161309523809524 test accuracy for Log Regressin is 0.91555555555556



#### XGBoost 超參數調整



| 超參數               | 結果    | 超參數               | 結果    | 超參數                       | 結果    | 超參數                       | 結果    |
|-------------------|-------|-------------------|-------|---------------------------|-------|---------------------------|-------|
| learning_rate=0.1 | 0.936 | learning_rate=0.2 | 0.975 | learning_rate=0.2         | 0.997 | learning_rate=0.2         | 0.999 |
| max_depth=3       |       | max_depth=3       |       | max_depth= <mark>4</mark> |       | max_depth= <mark>5</mark> |       |

acc\_train of XGB is : 1.0

acc\_test of XGB is : 0.999444444444445



#### DNN 架構



```
model = keras.Sequential([
    keras.layers.Dense(512, activation='relu'),
    keras.layers.Dense(128, activation='relu'),
    keras.layers.Dense(64, activation='relu'),
    keras.layers.Dense(64, activation='relu'),
    keras.layers.Dense(10, activation='softmax')
])
```



## DNN 超參數調整



| 超參數           | 結果    | 超參數           | 結果    | 超參數           | 結果    |  |
|---------------|-------|---------------|-------|---------------|-------|--|
| epochs=100    |       | epochs=500    |       | epochs=500    | 0.999 |  |
| batch_size=25 | 0.867 | batch_size=25 | 0.983 | batch_size=50 |       |  |

DNN Train accuracy: 0.9998809695243835

DNN Test accuracy: 0.9994444251060486

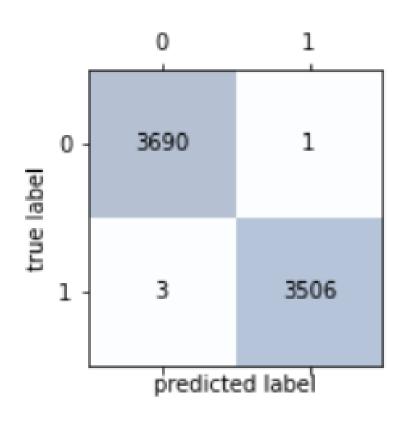




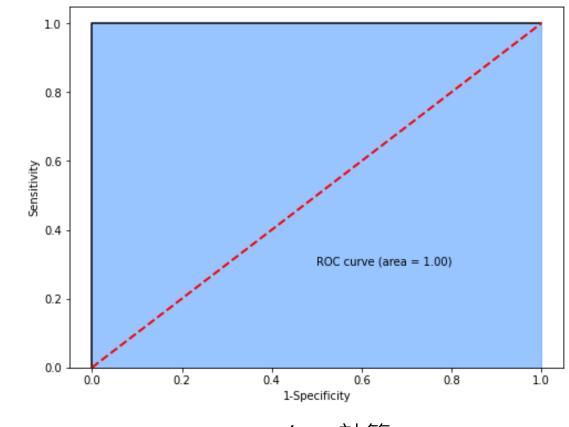
## 04 分析與模型效度驗證






# 模型比較

| 模型       | 準確率   | 訓練速度  | 決策 |
|----------|-------|-------|----|
| SVM      | 0.988 | 1分30秒 |    |
| Logistic | 0.915 | 1分內   |    |
| XGBoost  | 0.999 | 1分內   | ~  |
| DNN      | 0.999 | 6分    |    |





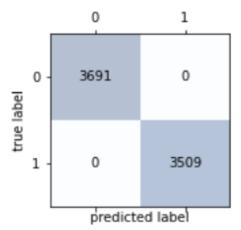

# 模型評估



混淆矩陣



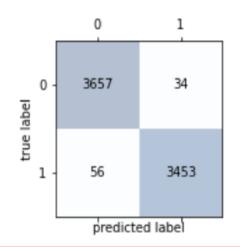





#### 泛化能力評估

編號1受測者 1.2、1.3 m/s

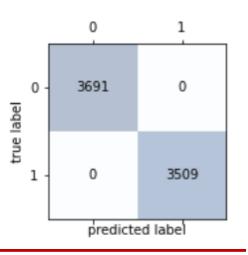
train\_accuracy: 1.0


test\_accuracy: 1.0



編號1受測者 1.4、1.6 m/s

train\_accuracy: 0.9998214285714285


test\_accuracy: 0.9875



編號2受測者 0.7、0.9 m/s

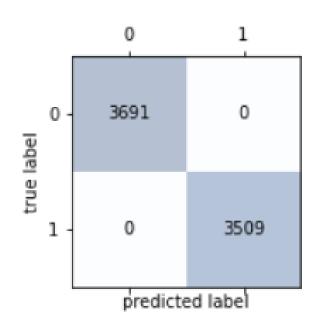
train\_accuracy: 1.0

test\_accuracy: 1.0








#### 不同身份辨識

- 編號1 和 編號2 兩位不同的受測者
- 0.7 m/s
- 成功在相同速度下,辨識不同人

```
#第一位 0.7資料
datasix1 = pd.read_csv("GP1_0.7_marker.csv")
datasix1.head()
#第二位 0.7資料
dataseven2 = pd.read_csv("GP2_0.7_marker.csv")
dataseven2.head()
```

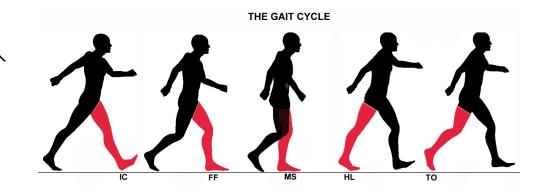
train\_accuracy: 1.0

test\_accuracy: 1.0








# 05 結論與未來展望





#### 結論與未來展望

- 成功使用分類模型、深度學習分辨出速率差異
- 成功利用步態特徵的獨特性,在相同速率下辨識不同的人
- XGBoost 是個不錯的分類模型 (準確率高、速度快)



目前可以分辨速率,希望未來可以透過步態的週期性,結合時間序列型模型,去預測下一步的步態速率變化

