Intelligent Integration of Enterprise Project3

應用CNN模型 辨識猴子種類

110034547 邱韵婷

- 1 研究背景
- 2 問題定義
- 3 研究方法
- 4 超參數調整
- 5 結論及未來展望

01

研究消景

研究背景

- 動物園是許多小朋友們最愛去的地方之一,那裡有各式各樣的動物種類,但往往同一動物還分許多品種,舉例來說,猴子即是較常辨別不出種類差異的,常見的品種有獼猴、金絲猴、長臂猿及白頭葉猴等,雖然都是猴子但每品種還是有各自的特色。
- 通常動物園會將不同種類的猴子安置在不同的觀賞區,遊客可透過 旁邊的告示牌瞭解此區域的猴子為何種品種,然而,新竹動物園的 猴子區劃分較不清楚,兩品種的猴子分別在同一區塊的上下位置, 而告示牌也並不清楚,造成遊客需比對多時或是詢問飼養員。
- 本研究應用CNN模型以辨識Kaggle資料庫所蒐集影像並探討其辨識 結果及正確性。

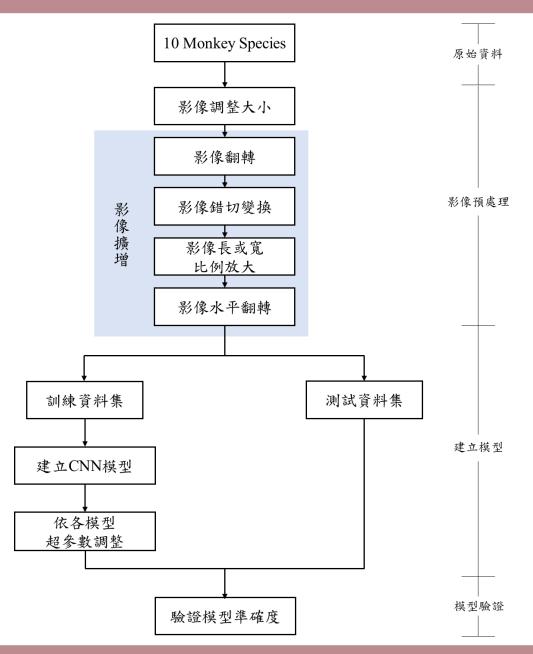
02

問題定義

問題定義

• 本研究將訓練Kaggle: 10 Monkey Species資料集以準確辨識十種不同品種的猴子。

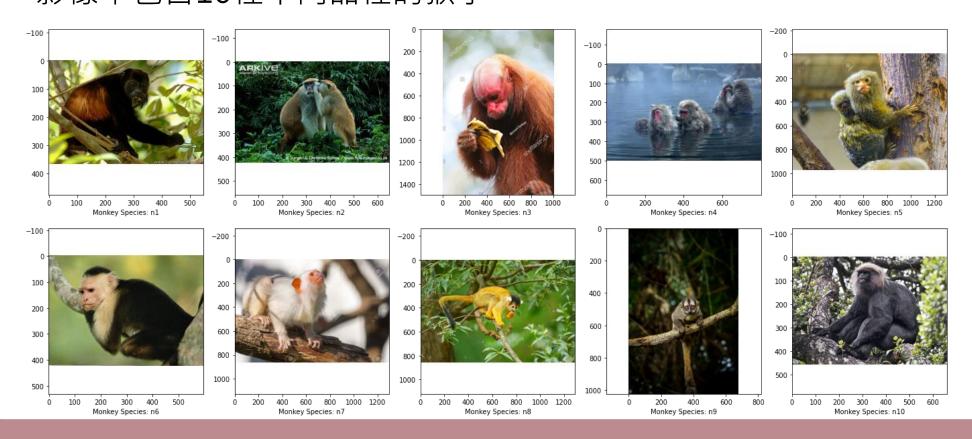
• 5W1H


Why	協助父母於動物園時可以介紹不同種類的猴子與孩子互動,也供一般民眾認識猴子品種
What	可藉由本研究更快速辨識不同品種的猴子
Where	動物園或孩童學習環境中(家、學校、戶外等)
When	參觀猴子區或是讀猴子相關繪本時
Who	欲瞭解猴子品種的遊客們、學習的孩童們
How	以深度學習CNN模型來訓練猴子品種資料庫

03

研究方法

研究流程


資料來源 kaggle

 Kaggle 網站所提供之10 Monkey Species資料庫,當中涵蓋測試 資料集1370張影像(佔83%)及驗證資料集272張影像(佔17%), 影像中包含10種不同品種的猴子。

Label	Latin Name	Common Name	Train Images	Validation Images
n0	alouatta_palliata	mantled_howler(鬃毛吼猴)	131	26
n1	erythrocebus_patas	patas_monkey (赤猴)	139	28
n2	cacajao_calvus	bald_uakari(白禿猴)	137	27
n3	macaca_fuscata	japanese_macaque(日本獼猴)	152	30
n4	cebuella_pygmea	pygmy_marmoset (倭狨)	131	26
n5	cebus_capucinus	white_headed_capuchin(巴拿馬白面卷尾猴)	141	28
n6	mico_argentatus	silvery_marmoset(狨猴)	132	26
n7	saimiri_sciureus	common_squirrel_monkey(松鼠猴)	142	28
n8	aotus_nigriceps	black_headed_night_monkey (黑夜猴)	133	27
n9	trachypithecus_johnii	nilgiri_langur(尼爾吉里葉猴)	132	26
		1370	272	

資料來源 kaggle

 Kaggle 網站所提供之10 Monkey Species資料庫,當中涵蓋測試 資料集1370張影像(佔83%)及驗證資料集272張影像(佔17%), 影像中包含10種不同品種的猴子。

資料預處理

• 資料庫中的各影像尺寸大小皆不同,將所有影像調整成224 X 224 同等大小,同時,將影像像素值標準化處理,將像素質同除255,以使值從0至255等比例縮放置0至1。

資料擴增

利用資料擴增之技術,將影像進行斜翻轉、錯切變換、水平翻轉、 長寬比例放大等處理,以增加訓練資料集的數據,彌補訓練資料量 不足的問題,同時提升模型訓練能力及增加泛化能力。

資料擴增項目	參數設定
rotation_range (指定旋轉角度範圍)	30
shear_range (錯切變換)	0.2
zoom_range (長及寬兩方向進行放大)	0.2
horizontal_flip (水平翻轉)	True

```
train_datagen = ImageDataGenerator(
    rotation_range = 30,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True)

train_generator = train_datagen.flow_from_directory(
    train_dir,
    target_size=IMG_SIZE,
    batch_size= BATCH_SIZE,
    class_mode='categorical')
```

資料擴增

將訓練資料集中的一張原始圖示範,該原始圖透過資料擴增所設定的參數輸出影像,除了尺寸不同外,還可觀察到以下參數設定與原圖間的差異。

原圖	rotation_range=30	shear_range= 0.2	zoom_range= 0.2	horizontal_flip=True
200 - 200 -				

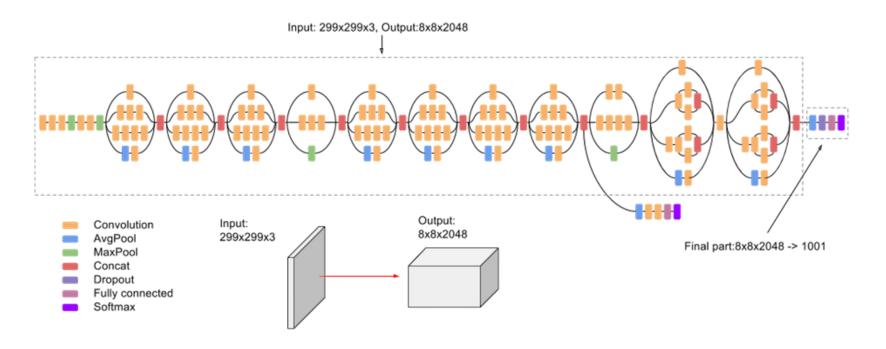
模型建構

• 本研究選定三種在各資料預測競賽中表現優良的 CNN 模型架構,分別是VGG16、InceptionV3與Xception,藉由三種預訓練模型以找出能辨識出本資料集最佳結果的模型,並透過實驗設計的方式進行參數最佳化,以訓練出績效最好的模型。

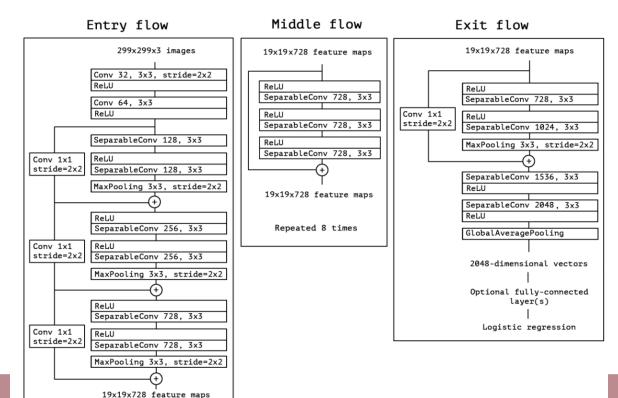
VGG16

InceptionV3

Xception


VGG16

- VGG應用多個較小卷積核(3x3)的卷積層代替一個較大卷積核的 卷積層,一方面可以減少參數,另一方面進行更多的非線性映射, 可增加網絡的擬合及表達能力。
- 由於卷積核專注於擴大通道數、池化專注於縮小寬和高,使模型層數更深且特徵圖更寬,其缺點為參數量龐大,計算資源需求高,且較難調整參數。


InceptionV3

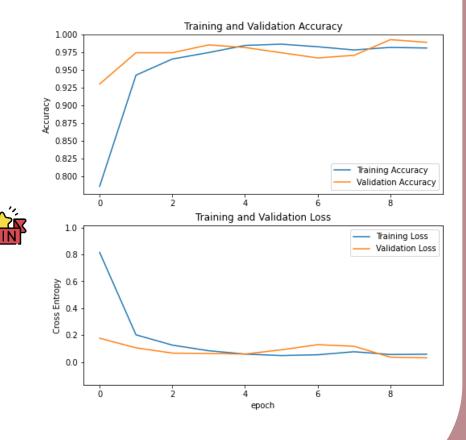
• 相較於VGG16其參數量較低且準度較高,使用較小的filter可有效的降低所需的計算量,因此Inception V3 可以實現快速的訓練,同時較寬的網路結構也可以避免產生瓶頸導致重要參數遺失,讓模型可更順利的與萃取特徵有關的參數。

Xception

• 指卷積神經網路的特徵圖中的跨通道相關性和空間相關性的對映,可以完全脫鉤,此假設是Inception結構中極端化的假設,稱作Xception。需要注意的是輸入圖片的模式不同於VGG16為224×224,為299×299,且輸入預處理函式也有不同。

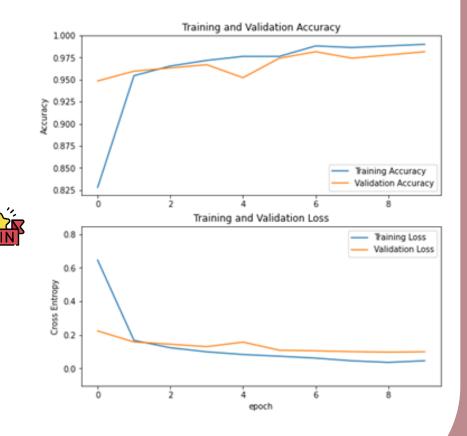
超參數調整

超參數調整


• 上述三種Pre-Train模型外,本研究選擇Optimizer及Learning rate 作為預調整之超參數項目。

Model	Optimizer	Learning rate
VGG19	SGD	0.01
InceptionV3	Adam	0.0001
Xception	Adagrad	

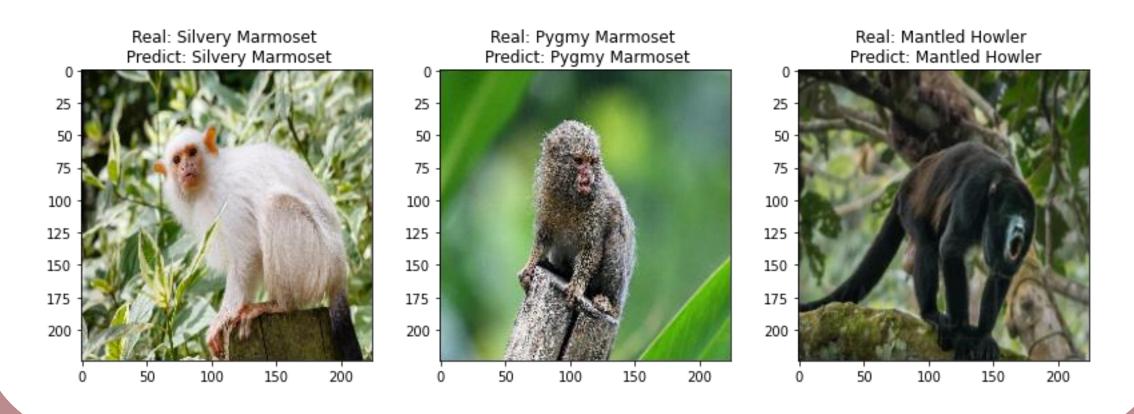
參數項目	數值	
Epochs	10	
Batch size	8	
Loss	categorical_crossentropy	


超參數調整

DOE	Model	Optimizer	Learning rate	Val_Acc	Val_loss
1		SGD	0.01	0.9063	0.5988
2		300	0.0001	0.929	0.421
3	VGG19	Adam	0.01	0.9143	0.6274
4	VGG19	Audili	0.0001	0.9215	0.4537
5		Adagrad	0.01	0.9021	0.542
6		Adagrad	0.0001	0.8879	0.7034
7		SGD	0.01	0.9243	0.1453
8		300	0.0001	0.9421	0.842
9	Veention	Adam	0.01	0.9618	0.1379
10	Xception	Audili	0.0001	0.985	0.0314
11		Adagrad	0.01	0.9387	0.2391
12		Adagrad	0.0001	0.9381	0.4614
13	InceptionV3	SGD	0.01	0.9763	0.071
14		300	0.0001	0.9599	0.2009
15		Adam	0.01	0.9362	0.2653
16		Audili	0.0001	0.9757	0.1744
17		Adagrad	0.01	0.9872	0.0412
18		Adagrad	0.0001	0.9135	0.6036

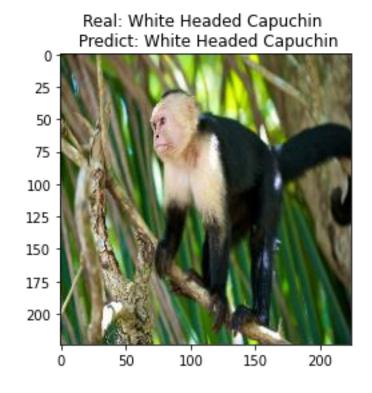
超參數調整

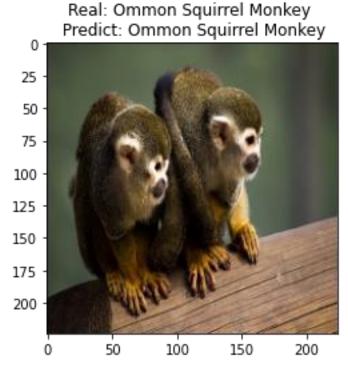
DOE	Model	Optimizer	Learning rate	Val_Acc	Val_loss
1		SGD	0.01	0.9063	0.5988
2		300	0.0001	0.929	0.421
3	VGG19	Adam	0.01	0.9143	0.6274
4	VGG19	Audili	0.0001	0.9215	0.4537
5		Adagrad	0.01	0.9021	0.542
6		Adagrad	0.0001	0.8879	0.7034
7		SGD	0.01	0.9243	0.1453
8		300	0.0001	0.9421	0.842
9	Veention	Adam	0.01	0.9618	0.1379
10	Xception	Auaiii	0.0001	0.985	0.0314
11		Adagrad	0.01	0.9387	0.2391
12		Adagrad	0.0001	0.9381	0.4614
13	InceptionV3	SGD	0.01	0.9763	0.071
14		J 30D	0.0001	0.9599	0.2009
15		Adam	0.01	0.9362	0.2653
16		Audili	0.0001	0.9757	0.1744
17		Adagrad	0.01	0.9672	0.0412
18		Adagrad	0.0001	0.9135	0.6036

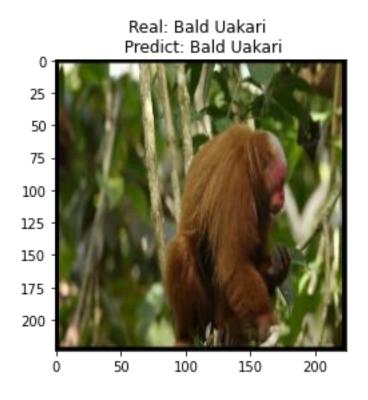

模型評估

 透過網路上蒐集測試資料以驗證本模型除具有高準確率外,本模型 也具有泛化能力。

```
test_images = [
        "https://projectzerofootprint.com/wp-content/uploads/2016/08/monkey-2-1080x768.jpg",
        "https://i.ytimg.com/vi/Ptisy32iRRA/hqdefault.jpg",
        "https://images.pond5.com/red-uakari-monkey-footage-064800523_iconl.jpeg",
        "https://thejapanalps.com/wp-content/uploads/2020/03/nihonsaru01.jpg",
        https://www.zoo-leipzig.de/fileadmin/ processed /e/c/csm Weissbauch-Zwergseidenaeffchen 3 c46c37b6al.jpg",
        "https://cdn.britannica.com/05/181805-050-C9682415/capuchin-monkey.jpg",
        https://www.neprimateconservancy.org/uploads/1/5/3/8/15380094/silvery-marmoset-istock-153473655-resize 45.jpg",
        "https://study.com/cimages/multimages/16/squirrel monkeys.png",
        https://ars.els-cdn.com/content/image/3-s2.0-B9780124095274000171-f17-04-9780124095274.jpg",
        https://media-cdn.tripadvisor.com/media/photo-s/0a/67/93/f5/nilgiri-langur-karunkorangu.jpg/
test labels = \lceil "n0", "n1", "n2",
                              "n3", "n4", "n5",
                              "n6", "n7",
monkev speciets type = ["Mantled Howler", "Patas Monkey", "Bald Uakari",
                                                "Japanese Macaque", "Pygmy Marmoset", "White Headed Capuchin",
                                                "Silvery Marmoset", "Ommon Squirrel Monkey",
                                                "Black Headed Night Monkey", "Nilgiri Langur"]
```


模型評估


透過網路上蒐集測試資料以驗證本模型除具有高準確率外,也具有 泛化能力,可觀察其皆可準確預測出品種。。



模型評估

透過網路上蒐集測試資料以驗證本模型除具有高準確率外,也具有 泛化能力,可觀察其皆可準確預測出品種。。

結論

- 從模型結果可以得出,本研究於模型為Xception、優化器為Adam、學習率為0.0001的模型表現最佳,驗證資料集準確度為0.985,透過遷移學習的方式讓模型訓練時間更短、收斂速度更快及更精準的權重參數。
- 實際測試中將網路上任一猴子種類上傳本模型也可準確辨識種類,由此 更展現本研究之模型具有泛化能力。
- 未來若能將此模型結合網站平台可發揮更大效益,當遊客參觀動物園時可用手機拍現場猴子以辨識其品種,動物園也可將網站結合結合行銷方案及遊園活動,以吸引更多遊客入園參觀。

Thank you for listening!