

MeBike 共享單車使用量 預測系統

Group 6 廖宇凡、黃顥 賴品均、陳怡諠

背景介紹 與問題討論

研究方法

3

個案研究

網頁設計

結論與未來展望

1

背景介紹與 問題討論

背景介紹

•「YouBike 微笑單車」是一個提供24小時甲租乙還租賃服務的電子無人自動化管理公共自行車系統,此系統的特點包含高品質的

營運服務,舒適好騎的腳踏車,以及方便註冊及使用。

現況分析-5W1H

How

運用AI方法配合網站資訊進行使用量預測。

Why

員工需要巡邏各站點調派車輛。

Where

學校周遭、運輸 量大的地區、交 通轉乘站點。

Who

YouBike員工、

顧客。

What

民眾會遇到長時 間無車可借或是 無車位可還的情 況。

When

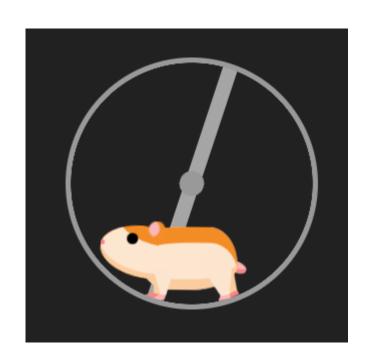
日常交通尖峰時刻。

研究方法

模型選擇

條件:

- 1.擅長處理時間序列數據
- 2.準確的預測能力
- 3.高維特徵處理



XGBoost

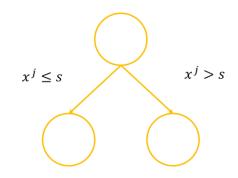
- 強大的預測能力:XGboost是boosting集成學習的其中一種,是 將許多樹模型(弱分類器)集成在一起,形成一個很強的分類器。而 所用到的樹模型則是CART回歸樹模型。
- 高效的計算性能:可有效計算大規模數據和高維特徵。

集成學習

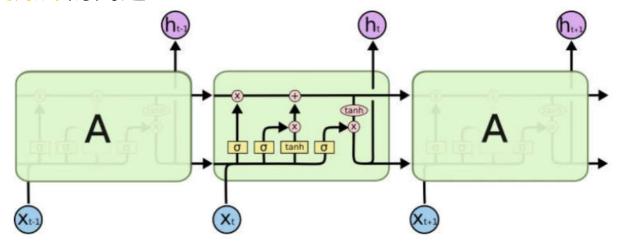
- Boosting流派:各分類器之間 有依賴關係,例如: XGboost
- Bagging流派: 各分類器之間 沒有依賴關係, 例如隨機森林 (Random Forest)。

CART回歸樹模型

• CART回歸樹是假設 樹為二叉樹,不斷將 特徵行分裂。

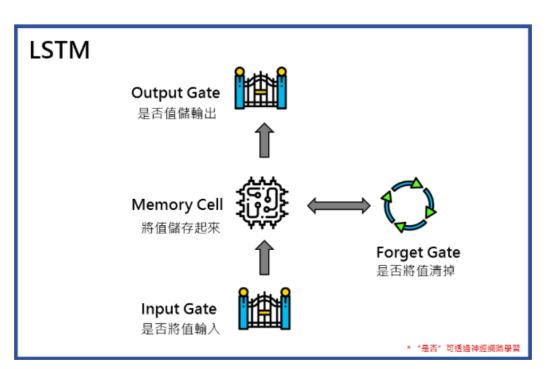


- 特殊的循環神經網路
- 擅長處理序列數據:可捕捉時間相關性或長期依賴關係
- 具有記憶單元:可解決RNN在長期序列訓練過程中梯度消失或 梯度爆炸的問題



LSTM

- 忘記階段→針對輸入值執 行選擇性遺忘
- 選擇記憶階段→根據重要 程度決定記憶重點
- 輸出階段→決定輸出因子



個案研究

資料集-倫敦共享單車

• 資料來源:倫敦交通局公開 資料

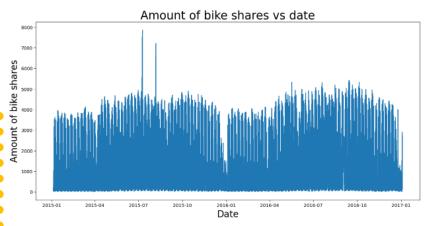
• 時間範圍:2015.1~2017.1

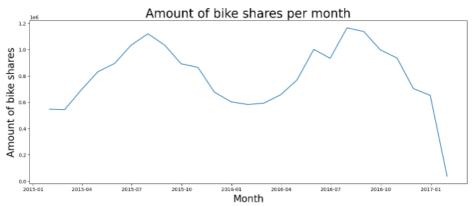
• 資料筆數:17415

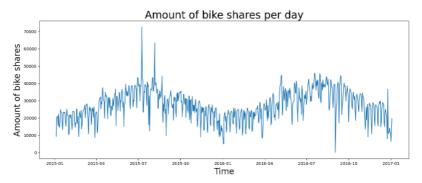
O		= pd. read_csv(" <u>/cor</u> head()	ntent/	drive	/MyD1	rive/You	<u>ıbike</u> dataset	t/london_merged.	csv")		
8		timestamp	cnt	t1	t2	hum	wind_speed	weather_code	is_holiday	is_weekend	season
	0	2015-01-04 00:00:00	182	3.0	2.0	93.0	6.0	3.0	0.0	1.0	3.0
	1	2015-01-04 01:00:00	138	3.0	2.5	93.0	5.0	1.0	0.0	1.0	3.0
	2	2015-01-04 02:00:00	134	2.5	2.5	96.5	0.0	1.0	0.0	1.0	3.0
	3	2015-01-04 03:00:00	72	2.0	2.0	100.0	0.0	1.0	0.0	1.0	3.0
	4	2015-01-04 04:00:00	47	2.0	0.0	93.0	6.5	1.0	0.0	1.0	3.0

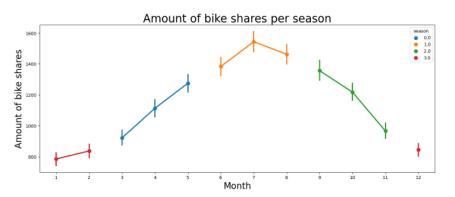
資料欄位	說明
timestamp	時間戳記
cnt	共享單車數量
t1	實際溫度(攝氏)
t2	體感溫度(攝氏)
hum	濕度百分比
wind_speed	風速(公里/小時)
weather_code	天氣類型
is_holiday	是否為節日
is_weekend	是否為周末
season	季節

資料集-倫敦共享單車時間趨勢

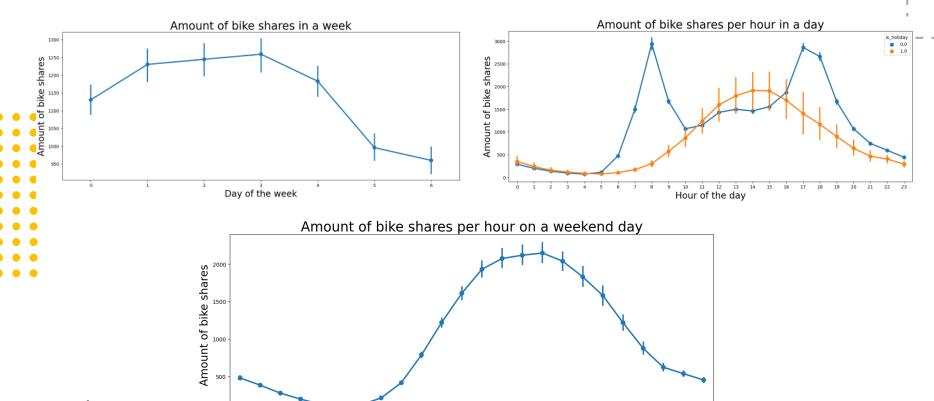






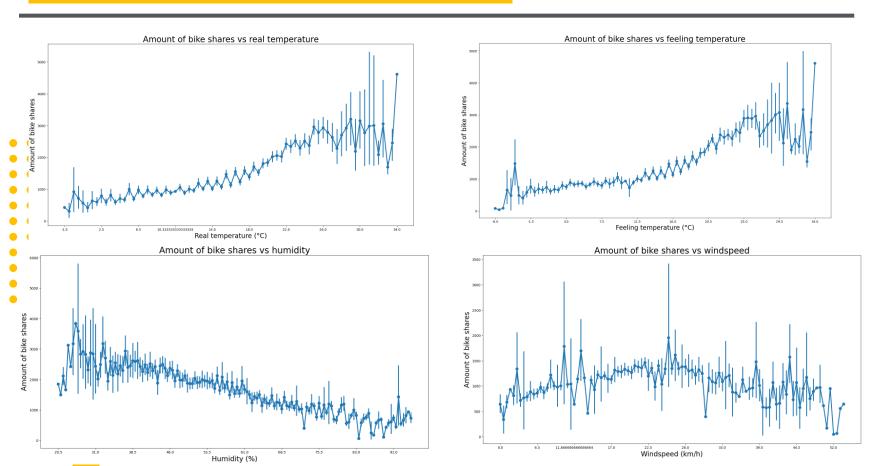


資料集-倫敦共享單車時間趨勢

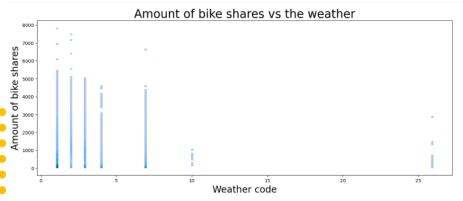


Hour of the day

資料集-倫敦共享單車屬性關係

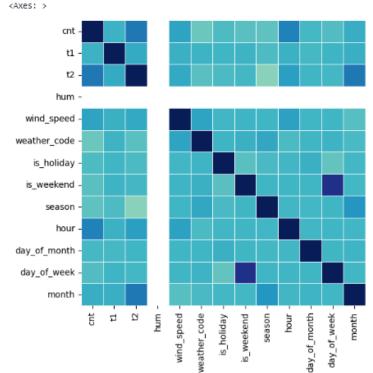


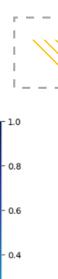
資料集-倫敦共享單車屬性關係



代號	說明
1	晴朗
2	分散的雲層
3	破碎的雲層
4	多雲
7	下雨
10	雷雨
26	下雪

6





- -0.2

XGBoost

XGBoost-資料前處理

• 決定輸入特徵x和目標變量y

```
X = data.drop(['timestamp','cnt'], axis=1)
y = data['cnt']
```

X:去除時間戳記和共享單車數量的其他元素

Y:共享單車數量

分割訓練集及測試集(7:3)

```
[ ] X_train, X_test = df_split(X, 0.7)
y_train, y_test = df_split(y, 0.7)
```

XGBoost-模型建立

使用XGBRegressor創建回歸模型xgbmodel

```
from xgboost.sklearn import XGBRegressor
from sklearn.metrics import mean_absolute_error,r2_score, mean_squared_log_error,mean_squared_error, make_scorer

[26] xgbmodel = XGBRegressor()
    xgbmodel.fit(X_train,y_train)

preds = xgbmodel.predict(X_test)
```

• 使用RMSE來評估實際結果和預測結果之間的差異

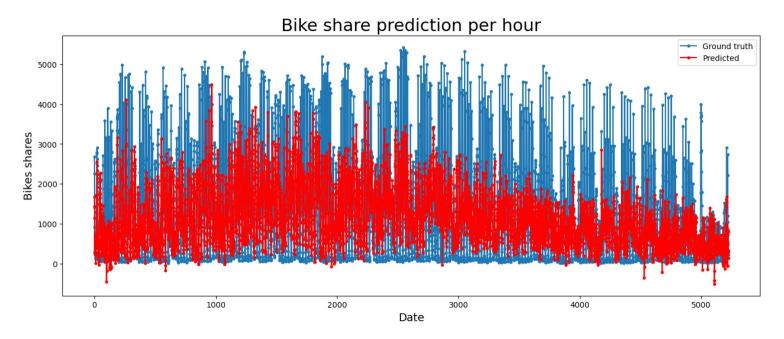
```
import numpy as np
rmse = np.sqrt(mean_squared_error(y_test, preds))
print("RMSE: %f" % (rmse))
```

¬→ RMSE: 1015.137644

- 使用平方項,將誤差轉為正數,同時放大 較大誤差的懲罰值
- 獲得能解釋的單位

XGBoost-預測結果

• 折線圖比較-實際值和預測值



LSTM

LSTM -資料前處理

分割訓練集和測試集(9:1)

```
import math
from sklearn.preprocessing import RobustScaler

training_data_len = math.ceil(len(df) *.9) # taking 90% of data to train and 10% of data to test
testing_data_len = len(df) - training_data_len

time_steps = 24
train, test = df.iloc[0:training_data_len], df.iloc[(training_data_len-time_steps):len(df)]
print(df.shape, train.shape, test.shape)
```

(17414, 13) (15673, 13) (1765, 13)

• 用RobustScaler進行特徵縮放

```
[] # Scale the all of the data from columns ['t1', 't2', 'hum', 'wind_speed']
train_trans = train[['t1', 't2', 'hum', 'wind_speed']].to_numpy()
test_trans = test[['t1', 't2', 'hum', 'wind_speed']].to_numpy()

scaler = RobustScaler() # Handles outliers
train.loc[:, ['t1', 't2', 'hum', 'wind_speed']]=scaler.fit_transform(train_trans)
test.loc[:, ['t1', 't2', 'hum', 'wind_speed']]=scaler.fit_transform(test_trans)

#Scale the all of the data from columns ['cnt']
train['cnt'] = scaler.fit_transform(train[['cnt']])
test['cnt'] = scaler.fit_transform(test[['cnt']])
```

處理每個特徵值域與單位不同的問題

LSTM -模型建立

• 建立LSTM模型

```
from keras.preprocessing import sequence
from keras.models import Sequential
from keras.layers import Dense, Dropout , LSTM , Bidirectional

model = Sequential()
model.add(Bidirectional(LSTM(50, input_shape=(x_train.shape[1], x_train.shape[2])))
model.add(Dropout(0.2))
model.add(Dense(units=1))

model.compile(optimizer="adam",loss="mse")

# prepared_model = model.fit(X_train, y_train, batch_size=32, epochs=100, validation_data=[X_test, y_test])
history = model.fit(x_train, y_train, epochs=150, batch_size=32, validation_split=0.3, shuffle=True)
```

LSTM -超參數優化

	Level 1	Level 2	Level 3
Dropout	0.1	0.2	0.3
Batch size	16	24	32
Validation split	0.1	0.2	0.3

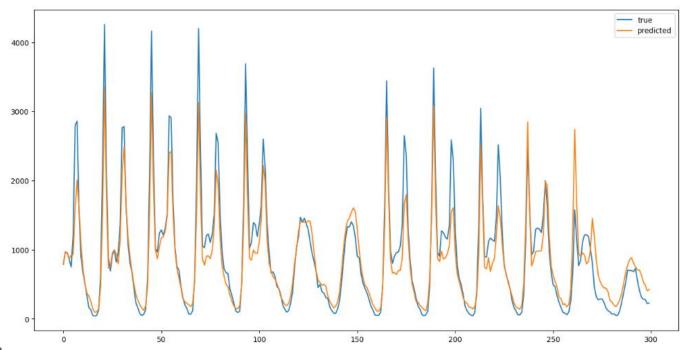
	Dropout	Batch size	Validation split	R-sq
1	0.1	16	0.1	0.8189
2	0.1	24	0.2	0.78
3	0.1	32	0.3	0.8385
4	0.2	16	0.2	0.83
5	0.2	24	0.1	0.8
6	0.2	32	0.3	0.845
7	0.3	16	0.2	0.796
8	0.3	24	0.3	0.83
9	0.3	32	0.1	0.82

LSTM -模型訓練

```
Epoch 136/150
Epoch 137/150
Epoch 138/150
Epoch 139/150
343/343 [========== ] - 6s 17ms/step - 1oss: 0.0139 - val_loss: 0.0645
Epoch 140/150
Epoch 141/150
Epoch 142/150
343/343 [=========== ] - 6s 18ms/step - 1oss: 0.0111 - val_loss: 0.0731
Epoch 143/150
Epoch 144/150
Epoch 145/150
343/343 [===========] - 5s 14ms/step - 1oss: 0.0116 - val_loss: 0.0615
Epoch 146/150
Epoch 147/150
Epoch 148/150
Epoch 149/150
Epoch 150/150
343/343 [========== ] - 5s 14ms/step - 1oss: 0.0110 - val_loss: 0.0564
```

LSTM -預測結果

• 折線圖比較-實際值和預測值



LSTM -評估指標

• 使用RMSE來評估實際結果和預測結果之間的差異

r2_1stm = r2_score(y_test, y_pred)

• 使用R² score來衡量模型的解釋能力

```
from sklearn.metrics import mean_squared_error, r2_score
    rmse_1stm = np.sqrt(mean_squared_error(y_test, y_pred))
    rmse_1stm
365.1102269162983
```

R² score

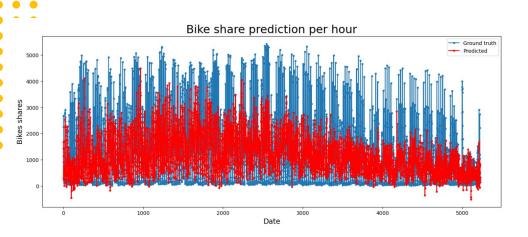
RMSE

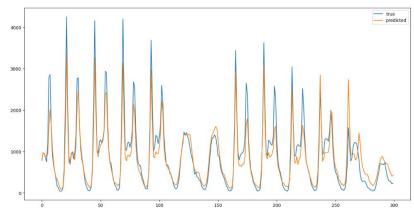
0.8456010779991341

r2 1stm

特徵x可以解釋目標變量y的比例

結果比較





網頁設計

資料集-Youbike2.0台北市公共自行車即時資訊

• 資料來源:政府資料開放平臺

• 時間範圍:即時資訊

D	lf_combi	ined																	
C+		sno	sna	tot	sbi	sarea	mday	lat	lng	ar	sareaen	snaen	aren	bemp	act	srcUpdateTime	updateTime	infoTime	infoDate
	0	500101001	YouBike2.0_捷運科技 大棲站	28	0	大安區	2023-05-31 00:32:13	25.02605	121.54360	復興南路二 段235號前	Daan Dist.	YouBike2.0_MRT Technology Bldg. Sta.	No.235 - Sec. 2 - Fuxing S. Rd.	25	1	2023-05-31 09:16:22	2023-05-31 09:16:26	2023-05-31 00:32:13	2023-05- 31
	1	500101002	YouBike2.0_復興南路 二段273號前	21	0	大安區	2023-05-30 23:50:09	25.02565	121.54357	復興南路二 段273號西 側	Daan Dist.	YouBike2.0_No.273 , Sec. 2 , Fuxing S. Rd.	No.273 · Sec. 2 · Fuxing S. Rd. (West)	21	1	2023-05-31 09:16:22	2023-05-31 09:16:26	2023-05-30 23:50:09	2023-05- 30
	2	500101003	YouBike2.0_國北教大 實小東側門	16	1	大安區	2023-05-31 00:24:13	25.02429	121.54124	和平東路二 段96巷7號	Daan Dist.	YouBike2.0_NTUE Experiment Elementary School (No. 7 · Ln. 96 · Sec. 2 · Heping E. Rd	13	1	2023-05-31 09:16:22	2023-05-31 09:16:26	2023-05-31 00:24:13	2023-05- 31
	3	500101004	YouBike2.0_和平公園 東側	11	1	大安區	2023-05-30 23:06:14	25.02351	121.54282	和平東路二 段118巷33 號	Daan Dist.	YouBike2.0_Heping Park (East)	No. 33 · Ln. 118 · Sec. 2 · Heping E. Rd	10	1	2023-05-31 09:16:22	2023-05-31 09:16:26	2023-05-30 23:06:14	2023-05- 30
	4	500101005	YouBike2.0_辛亥復興 路口西北側	16	3	大安區	2023-05-30 23:10:20	25.02153	121.54299	復興南路二 段368號	Daan Dist.	YouBike2.0_Xinhai Fuxing Rd. Intersection (Nor	No. 368 · Sec. 2 · Fuxing S. Rd.	13	1	2023-05-31 09:16:22	2023-05-31 09:16:26	2023-05-30 23:10:20	2023-05- 30

資料集-Youbike2.0台北市公共自行車即時資訊

資料欄位	說明	資料欄位	說明		
sno	站點代號	sareaen	場站區域英文		
sna	場站中文名稱	snaen	場站名稱英文		
tot	場站總停車格	aren	地址英文		
sbi	場站目前車輛數量	bemp	空位數量		
sarea	場站區域	act	全站禁用狀態		
mday	資料更新時間	srcUpdateTime	YouBike2.0系統發布 資料更新的時間		
lat	緯度	updateTime	大數據平台經過處理後 將資料存入DB的時間		
Ing	經度	infoTime	各場站來源資料更新時 間		
ar	地點	infoDate	各場站來源資料更新時 間		

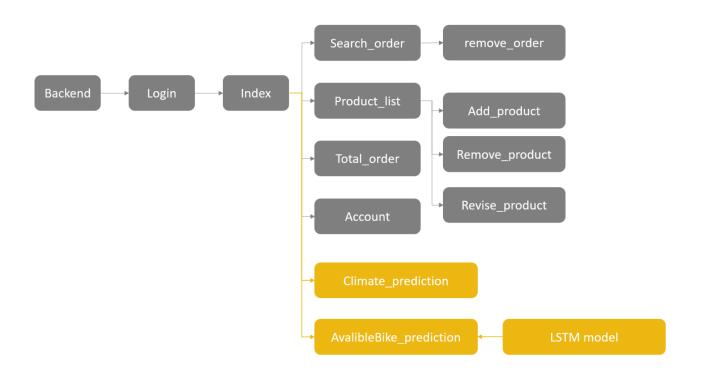
資料集-天氣

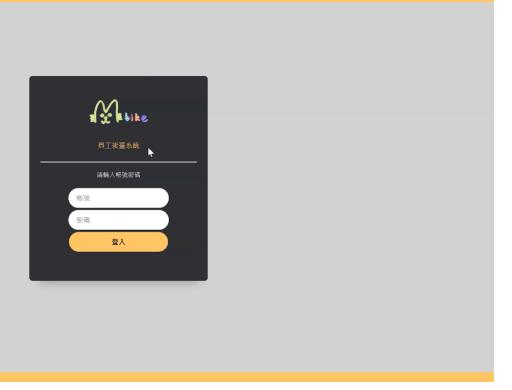
• 資料來源: open weather公開資料

• 時間範圍:即時資訊

資料欄位	說明
weather.description	天氣類型
main.temp	實際溫度(攝氏)
main.feels_like	體感溫度(攝氏)
main.humidity	濕度
wind.speed	風速(公里/小時)

網頁架構圖-後台





5 結論與未來 展望

未來展望

針對這次改善成果,透過LSTM模型設計**站點使用** 量預測系統,可以幫助調度人員更靈活的安排單車後 勤作業,不再像過往作業需要高度依賴人員巡邏,更 可以大幅降低站點滿車以及空車率,提供客戶更好的 使用體驗。未來可再結合線上預約系統,可以將即時 資訊及預約數量結合,預測每個站點的流量,進而超 前部署,達到利用率最大化,提升顧客滿意度。

Thank you