

食品影像辨識

第六組 112034564 曾聖閔 112034554 陳 薪 112034556 莊傑宇

LIST OF CONTENTS

01

背景介紹

04

顧客及管理 者功能 02

實驗方法

05DEMO

03

模型訓練

06

結論

PARTONE

背景介紹

背景介紹

餐飲店在日常運營中經常面臨食品管理效率低下的問題,這包括手動分類食品和管理庫存的不準確性。這些問題不僅導致運營成本增加,還可能造成食材浪費。

目前問題

- 傳統手動管理效率低下
- 容易出現管理錯誤
- 需應對市場需求和顧客期望

專案目標

- 使用深度學習模型進行食品影像辨識
- 自動識別和分類食品
- 減少人力成本,提高管理效率

5W1H

WHAT

食品影像及其分類結果。

WHERE

餐廳後台管理系統和櫃台結帳。

WHY

傳統分類方式效率低且容易出錯,無法滿足餐飲業對高效管理的需求。

WHO

餐飲業者,包括滷味店、餐廳。

WHEN

在需要對食品進行自動分類和管理時,以及在訂單高峰期進行快速處理時。

HOW

利用深度學習模型進行食品影像識別,實現自動分類和管理。

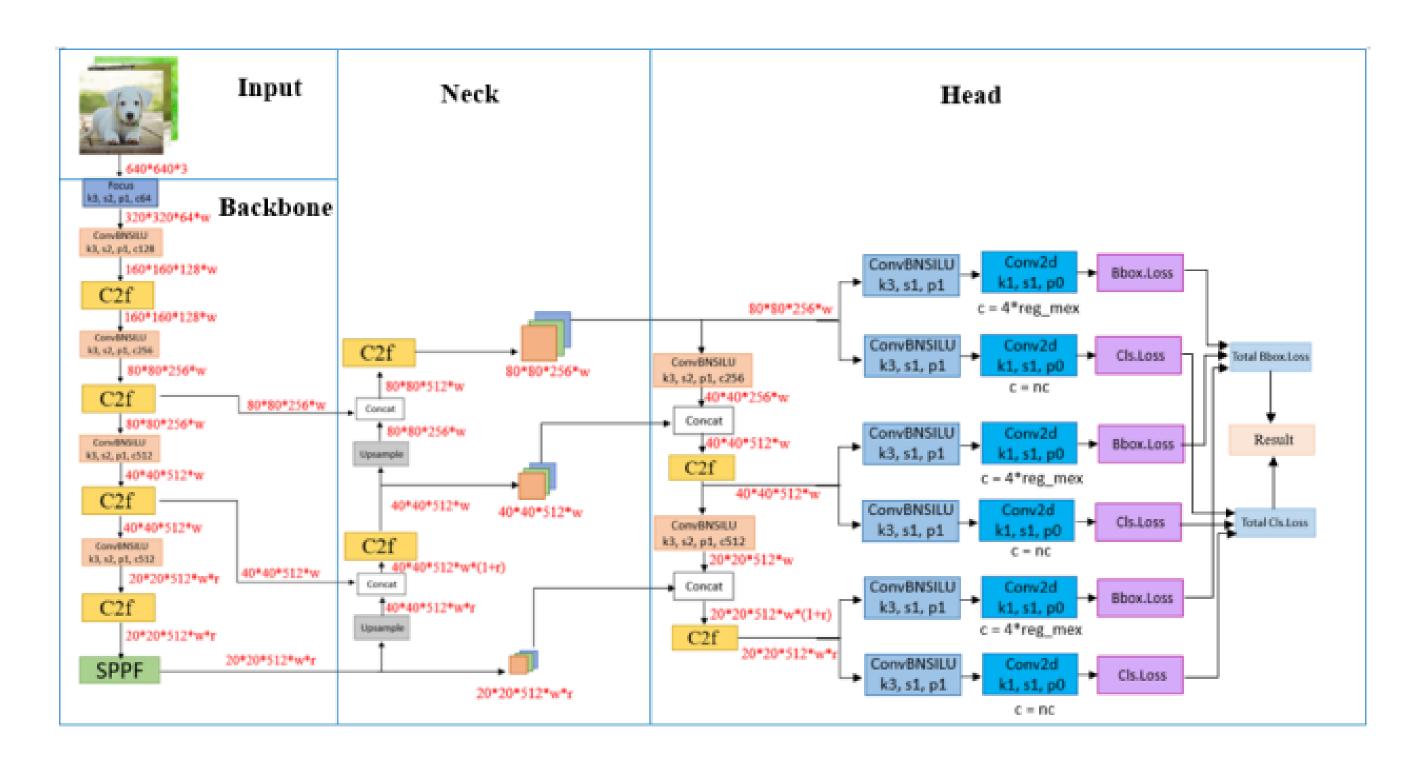
PART TWO

實驗方法

資料集介紹

在本專案中,我們選用了來自Foodcam的UEC FOOD 100 Ver 1.0資料集。

- → 100種不同的食品類別
- → 12740張的食品影像
- ◆味噌湯類別的影像數量最多,共有729張
- → 蛋包飯類別的影像數量最少,只有101張影像


資料集介紹

每個類別目錄下都包含一個名為bb_info.txt的文件,其中記錄了食品影像的邊界框訊息。

Model介紹

- ◆ YOLO(You Only Look Once)是即時物件偵測中重要的技術。
- ◆ 這項演算法在各種領域和應用中被廣泛使用。
- ◆ 在過去幾年裡生成了許多版本。
- ◆ YOLOv8 引入了一些新的設計思想和技術,以提高模型的精度和速度。

YOLOv8 架構

PARTTHREE

模型訓練

資料前處理

圖像增強

```
def augment_images(image_path, output_path, num_augmentations):
    os.makedirs(output_path, exist_ok=True)
    image = Image.open(image_path)
    base_name = os.path.splitext(os.path.basename(image_path))[0]

    transform = transforms.Compose([
        transforms.RandomRotation(degrees=(90, 270)),
    ])

    for i in range(num_augmentations):
        augmented_image = transform(image)
        augmented_image.save(os.path.join(output_path, f"{base_name}_aug_{i}.jpg"))
```

資料前處理

標準化邊界框數值

```
# 自動檢測圖像尺寸
with Image.open(img_path) as img:
img_width, img_height = img.size

# 計算 YOLO 格式的標籤

x_center = (x1 + x2) / 2 / img_width
y_center = (y1 + y2) / 2 / img_height
width = (x2 - x1) / img_width
height = (y2 - y1) / img_height

label = f"{class_id - 1} {x_center} {y_center} {width} {height}\n" # YOLO 的格式期望類別 ID 從 0 開始,所以 class_id -1
```

```
img xl yl x2 y2
400 0 0 400 300
401 0 0 280 210
402<del>28 24 254 224</del>
403 0 0 400 300
404 0 0 480 309
405 23 21 306 256
406 16 9 266 208
407 26 20 221 184
408 6 0 271 226
409 21 15 317 244
410 15 10 323 271
411 0 50 187 186
412 13 46 359 269
413 0 0 159 142
```

資料前處理

目錄結構轉換

```
# 設置好欲進行儲存的路徑

def create_directories(output_path):
    train_image_dir = os.path.join(output_path, 'train', 'images')
    train_label_dir = os.path.join(output_path, 'train', 'labels')
    val_image_dir = os.path.join(output_path, 'val', 'images')
    val_label_dir = os.path.join(output_path, 'val', 'labels')

os.makedirs(train_image_dir, exist_ok=True)
    os.makedirs(train_label_dir, exist_ok=True)
    os.makedirs(val_image_dir, exist_ok=True)
    os.makedirs(val_label_dir, exist_ok=True)
```

YOLOv8 超參數優化

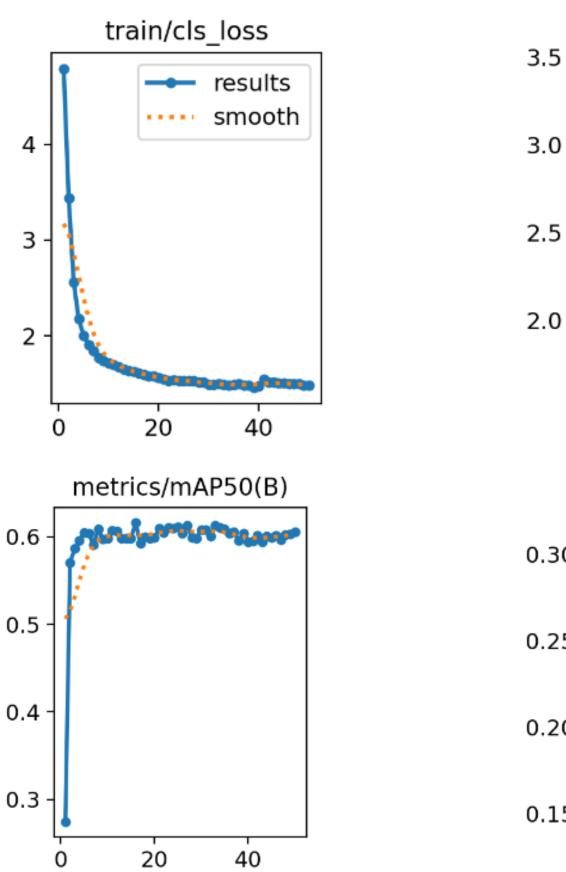
Epoch	Batch Size	Optimizer
50	8	Auto
50	8	SGD
50	16	Auto
50	16	SGD
75	8	Auto
75	8	SGD
75	16	Auto
75	16	SGD

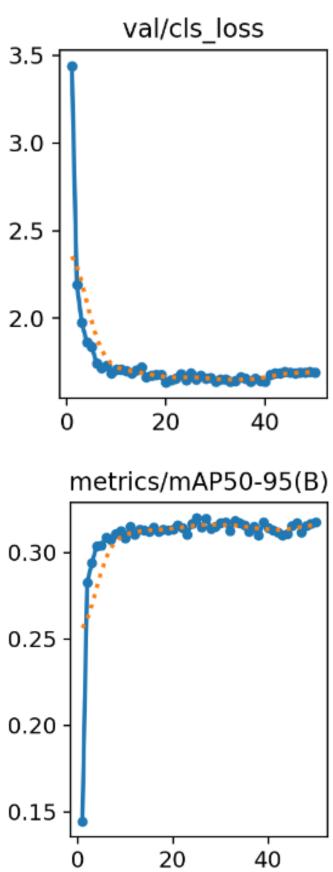
YOLOv8 Run

	from	n	params	module	arguments
0	-1	1	464	ultralytics.nn.modules.conv.Conv	[3, 16, 3, 2]
1	-1	1	4672	ultralytics.nn.modules.conv.Conv	[16, 32, 3, 2]
2	-1	1	7360	ultralytics.nn.modules.block.C2f	[32, 32, 1, True]
3	-1	1	18560	ultralytics.nn.modules.conv.Conv	[32, 64, 3, 2]
4	-1	2	49664	ultralytics.nn.modules.block.C2f	[64, 64, 2, True]
5	-1	1	73984	ultralytics.nn.modules.conv.Conv	[64, 128, 3, 2]
6	-1	2	197632	ultralytics.nn.modules.block.C2f	[128, 128, 2, True]
7	-1	1	295424	ultralytics.nn.modules.conv.Conv	[128, 256, 3, 2]
8	-1	1	460288	ultralytics.nn.modules.block.C2f	[256, 256, 1, True]
9	-1	1	164608	ultralytics.nn.modules.block.SPPF	[256, 256, 5]
10	-1	1	0	torch.nn.modules.upsampling.Upsample	[None, 2, 'nearest']
11	[-1, 6]	1	0	ultralytics.nn.modules.conv.Concat	[1]
12	-1	1	148224	ultralytics.nn.modules.block.C2f	[384, 128, 1]
13	-1	1	0	torch.nn.modules.upsampling.Upsample	[None, 2, 'nearest']
14	[-1, 4]	1	0	ultralytics.nn.modules.conv.Concat	[1]
15	-1	1	37248	ultralytics.nn.modules.block.C2f	[192, 64, 1]
16	-1	1	36992	ultralytics.nn.modules.conv.Conv	[64, 64, 3, 2]
17	[-1, 12]	1	0	ultralytics.nn.modules.conv.Concat	[1]
18	-1	1	123648	ultralytics.nn.modules.block.C2f	[192, 128, 1]
19	-1	1	147712	ultralytics.nn.modules.conv.Conv	[128, 128, 3, 2]
20	[-1, 9]	1	0	ultralytics.nn.modules.conv.Concat	[1]
21	-1	1	493056	ultralytics.nn.modules.block.C2f	[384, 256, 1]
22	[15, 18, 21]	1	1086604	ultralytics.nn.modules.head.Detect	[100, [64, 128, 256]]

YOLOv8

實驗結果


Epoch	Batch Size	Optimizer	Precision	Recall	mAP@0.5	mAP50-95	Time(hrs)
50	8	Auto	0.6377	0.6605	0.595	0.3101	1.72
50	8	SGD	0.6677	0.6853	0.5995	0.3146	1.667
50	16	Auto	0.6992	0.659	0.6054	0.3178	1.62
50	16	SGD	0.6458	0.6291	0.5879	0.301	1.635
75	8	Auto	0.667	0.6768	0.603	0.314	2.52
75	8	SGD	0.6621	0.6743	0.6023	0.3139	2.786
75	16	Auto	0.6833	0.6732	0.6018	0.317	2.681
75	16	SGD	0.6948	0.6688	0.5967	0.3148	2.616


YOLOv8

4

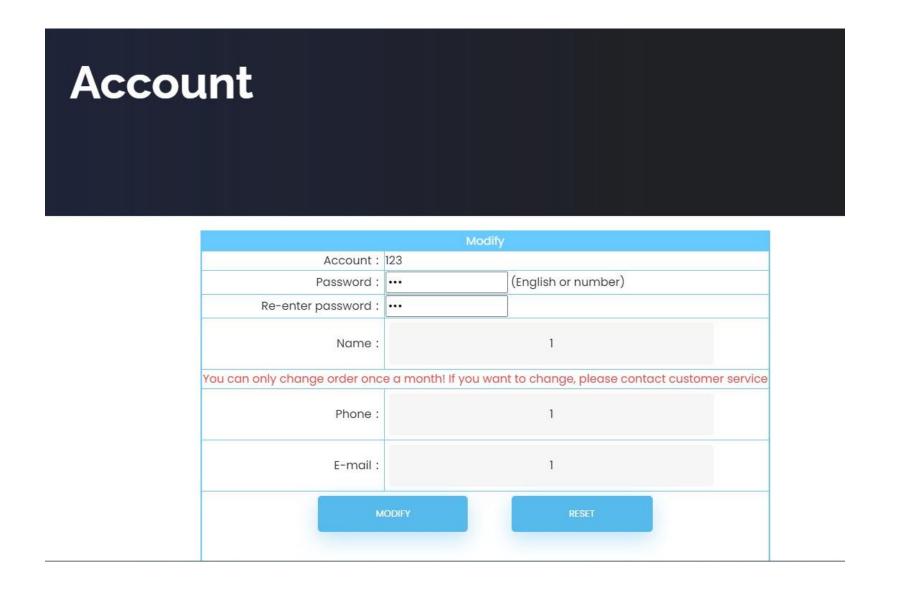
3

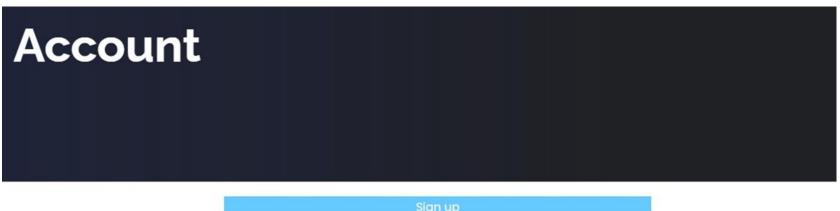
實驗結果

YOLOv5 Run

	from		params	module	arguments
0	-1		1760	ultralytics.nn.modules.conv.Conv	[3, 16, 6, 2, 2]
1	-1		4672	ultralytics.nn.modules.conv.Conv	[16, 32, 3, 2]
2	-1		4800	ultralytics.nn.modules.block.C3	[32, 32, 1]
3	-1		18560	ultralytics.nn.modules.conv.Conv	[32, 64, 3, 2]
4	-1	2	29184	ultralytics.nn.modules.block.C3	[64, 64, 2]
5	-1	1	73984	ultralytics.nn.modules.conv.Conv	[64, 128, 3, 2]
6	-1	3	156928	ultralytics.nn.modules.block.C3	[128, 128, 3]
7	-1	1	295424	ultralytics.nn.modules.conv.Conv	[128, 256, 3, 2]
8	-1	1	296448	ultralytics.nn.modules.block.C3	[256, 256, 1]
9	-1	1	164608	ultralytics.nn.modules.block.SPPF	[256, 256, 5]
10	-1	1	33024	ultralytics.nn.modules.conv.Conv	[256, 128, 1, 1]
11	-1	1	0	torch.nn.modules.upsampling.Upsample	[None, 2, 'nearest']
12	[-1, 6]	1	0	ultralytics.nn.modules.conv.Concat	[1]
13	-1	1	90880	ultralytics.nn.modules.block.C3	[256, 128, 1, False]
14	-1	1	8320	ultralytics.nn.modules.conv.Conv	[128, 64, 1, 1]
15	-1	1	0	torch.nn.modules.upsampling.Upsample	[None, 2, 'nearest']
16	[-1, 4]	1	0	ultralytics.nn.modules.conv.Concat	[1]
17	-1	1	22912	ultralytics.nn.modules.block.C3	[128, 64, 1, False]
18	-1	1	36992	ultralytics.nn.modules.conv.Conv	[64, 64, 3, 2]
19	[-1, 14]	1	0	ultralytics.nn.modules.conv.Concat	[1]
20	-1	1	74496	ultralytics.nn.modules.block.C3	[128, 128, 1, False]
21	-1	1		ultralytics.nn.modules.conv.Conv	[128, 128, 3, 2]
22	[-1, 10]	1	0	ultralytics.nn.modules.conv.Concat	[1]
23		1		ultralytics.nn.modules.block.C3	[256, 256, 1, False]
24	[17, 20, 23]	1		ultralytics.nn.modules.head.Detect	[100, [64, 128, 256]]
				parameters, 2843740 gradients, 8.7 GFLOPs	
	,			•	

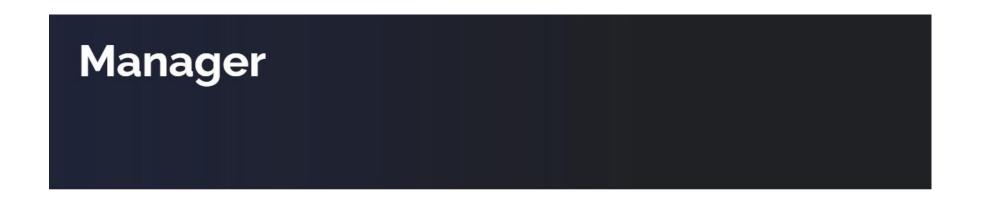
YOLOv5


實驗結果


Epoch	Batch Size	Precision	Recall	mAP@0.5	mAP50-95	Time(hrs)
50	8	0.6472	0.6534	0.6	0.3011	1.924
50	16	0.649	0.652	0.612	0.3148	1.714
75	8	0.6541	0.6775	0.6213	0.3058	2.912
75	16	0.6539	0.6362	0.598	0.2998	2.762

PARTFOUR

顧客及管理者功能


顧客及管理者功能

	Sign up					
Account :	(English or number)					
Password :		(English or number)				
Re-enter password :						
Name :						
Phone :						
E-mail :						
SIGN	UP	RESET				

顧客及管理者功能

新增

請填入下列資料					
*收件人姓名:					
*電話:					
*取餐時間:	17:30 🕶				
*幾號餐:	1 *				
*價格:					
*數量:					
新増訂單					

顧客及管理者功能

Account

訂單查詢結果

收件人		産品	定價	数量	取餐時間	下定日期	小計
123	456		\$120	ı	17:30	2024-06-13 21:30:54	\$120 總金額 = 120

PARTFIVE DEMO

PARTSIX

結論

結論

本專案通過結合深度學習模型和網頁應用,實現了食品影像辨識的自動化,並在此基礎上開發了一個完整的餐飲管理系統。系統具備以下主要功能:

- 1. 食品影像自動分類:通過使用YOLO v8進行食品影像的分類,我們能 夠準確識別和分類多種食品。
- 2. 食品價格計算:系統根據識別結果,自動計算食品的價格。這不僅提高了效率,還減少了人工計算的誤差。
- 3. 生成付款QR碼:系統根據計算出的價格,自動生成對應的支付QR碼, 方便顧客使用手機進行快速支付,提升了顧客的購物體驗。

貢獻

主要貢獻為:

- 1. 提升工作效率:本系統通過自動化食品識別和價格計算,顯著提升了 餐飲業者的工作效率,減少了手動操作的時間和成本。
- 2. 降低錯誤率:通過使用深度學習模型進行食品分類,減少了人工操作中可能出現的分類錯誤,確保了數據的準確性和一致性。
- 3. 改進顧客服務:系統自動生成支付QR碼,簡化了支付過程,提升了顧客的購物體驗,提高了顧客滿意度和忠誠度。

侷限性

主要侷限性為:

- 1. 資料依賴:模型的準確性依賴於訓練資料的品質和多樣性,對於未見過的食品類別或新的影像資料,模型的識別準確性可能會有所下降。
- 2. 模型更新需求:隨著食品類別和樣本的變化,模型需要定期更新和重新訓練,以保持其準確性和適用性。
- 3. 計算資源要求:深度學習模型的訓練和運行需要較高的計算資源,對於一些小型餐飲業者,可能需要額外的技術支持和硬體投入。

適用性

主要適用性為:

- 1. 餐飲業:系統主要適用於餐飲行業,尤其是需要進行大量食品分類和價格計算的餐廳、外賣店和食品配送中心等。
- 2. 零售業:系統可以擴展應用於超市和便利店等零售場景,實現商品的自動分類和價格計算,提升運營效率。

未來展望

THANKS FOR LISTENING