### An Integrated Algorithm Method to Optimize Resource Allocation with a Case Study of Production Line

#### **Group 4**

105034534 Becky Dong 105034541 Neal Lee 105034542 Mavies Liao 105034556 Kevin Jao

# Agenda

- 1. Introduction
- 2. Literature Review
- 3. Methodology
- 4. Case Study
- 5. Analysis & Discussion
- 6. Conclusion & Recommendations

# Introduction

- **1.** Case
- 2. Aim
- 3. Method
- 4. Step

### Introduction

Case: A continuous flow of production line

Aim: Optimize the allocation of machines and buffers in a production line for increasing profits.



4

### Introduction

Step 1: Combination of Simplified Swarm Optimization (SSO) with Simulated Annealing (SA).

- Step 2: Compare the effect of the results.
- Step 3: Verify the results.

# **Literature Review**

# **Simplified Swarm Optimization**

- Simplified Swarm Optimization (SSO) was originally proposed by Yeh in 2009.
- SSO is also called the discrete PSO(Particle Swarm Optimization ).
- SSO is a stochastic optimization algorithm to compensate for the drawbacks of PSO in solving discrete problems.
- However, this algorithm is easily reflected by initial solution.



### **PSO Searching Example (2/2)**

- → Original Velocity
- → Global Experience Velocity
- → Updated Velocity
- → Particle Experience Velocity

### **PSO Equation**

### 1. Update Velocity Equation

$$\overline{V_{i,new}} = w \cdot \overline{V_{i,old}} + c_1 \cdot rand() \cdot (P_i - X_{i,old}) + c_2 \cdot rand() \cdot (G - X_{i,old})$$

### 2. Update Position Equation $X_{i,new} = X_{i,old} + V_{i,new}$ Notation : W : Weight C1 : Individuality variable C2 : Sociality variable

- P : Particle best
- G : Global best

### **SSO** Equation





### **Simulated Annealing**

- Simulated Annealing (SA) was originally proposed by S.Kirkpatrick in 1980.
- SA describes a group of heuristic optimization techniques based on iterative improvement
- SA is motivated by an analogy to the statistical mechanics of annealing in solids.
- SA cannot identify whether it has found an optimal solution

### **Simulated Annealing Searching Method(1)**





### **Comparison of SSO and SA**

|     | Advantage                                                                                                                | Disadvantage                                     |
|-----|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| SSO | <ul> <li>(1) It is suitable for solving discrete problems.</li> <li>(2) Update mechanism is simpler than PSO.</li> </ul> | (1) It is easily influenced by initial solution. |
|     |                                                                                                                          |                                                  |

| (1) It is relatively easy to |  |  |  |  |  |
|------------------------------|--|--|--|--|--|
| code, even for complex       |  |  |  |  |  |

SA

- problems.
  - (2) The implement time is short.
- (1) The method cannot tell whether it has found an optimal solution.(2) It only has one particle





### Methodology

- Find better initial solution.
- Implement time is short.

• It is suitable for solving discrete problems.



SA

• The performance becomes better, and find the best solution more efficiently

SA+SSO

# Methodology



### **The Mathematical Model**

#### Notations

- $W_i$  number of machine in workstation *i*,  $1 \le i \le m$ .
- $B_j$  size of capacity in buffer j,  $1 \le j \le n$ .
- TH throughput of the production line
- $M_c$  cost of operating for each machine.
- $B_c$  cost of buffer for each capacity.
- *P* price of each product
- Objective function:
  - $Max Profit = P^*E[TH] M_c \sum_{i=1}^m W_i B_c \sum_{j=1}^n B_j$
- Subject to :
  - $1 \le W_i \le 3, \quad \forall i$  $1 \le B_j \le 10, \forall j$

# **Case Study**

- 1. A production line
- 2. Aim
- 3. assumption

### **Case Study**

- A production line
  - four parts
  - three finite-size buffers
  - an infinite supply of blank parts.
  - Aim: Find the optimal number of machines and buffers for maximizing the profits.

# Assumption



- Buy one machine:\$25,000
- Add one buffer: \$5,000

#### Revenue

• Sell one product: \$100

# Assumption

Materials arrival and process time follow exponential distribution.



### Assumption

A. Objective Function. Max Revenue =  $P^*E[TH] - M_c \sum_{i=1}^m W_i - B_c \sum_{j=1}^n B_j$ B. Constraints.  $1 \le W_i \le 3, \quad 1 \le i \le 4, \quad i \in N .$   $1 \le B_j \le 10, \quad 1 \le j \le 3, \quad j \in N .$ C. Parameter.  $M_c = 25000$   $B_c = 5000$ P = 100

### **Analysis & Discussion**

### Optimal solution for each iteration



### Simulation time of two methods

| Method          | SA+SSO | SSO   |
|-----------------|--------|-------|
| Simulation time | 8.142  | 10.83 |

### Optimal solution for resource allocation

| Variable | $W_1$ | $W_2$ | $W_3$ | $W_4$ | <b>B</b> <sub>1</sub> | <b>B</b> <sub>2</sub> | <b>B</b> <sub>3</sub> |
|----------|-------|-------|-------|-------|-----------------------|-----------------------|-----------------------|
| Number   | 3     | 3     | 2     | 2     | 2                     | 3                     | 1                     |

# Sensitivity analysis

### Sensitivity analysis(1)



### Sensitivity analysis(2)



### Sensitivity analysis(3)



# Conclusion & Recommendations

### Conclusion & Recommendations

### Conclusion

- This integrated method overcomes the drawbacks of SSO, which is easily influenced by the initial solution.
- It could find the optimal solution more efficiently using lower simulation resources and time.

#### Recommendations

• the integrated method is expected to be used in the problems with larger feasible solution region.

