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Abstract. There is a continuous flow performed one product unit that is routed 
from process to process in a production line. It is an important issue to figure out 
how to allocate the optimal resource and buffers in a production line for increasing 
efficiency and reducing costs. However, using Simplified Swarm Optimization 
(SSO) to solve this problem is easy to be inflected by initial solutions. This study 
tries to find the optimal configuration in a production line. This study utilizes the 
integrated method, combing SSO with Simulated Annealing (SA) to find the best 
scheme efficiently. Then, compare the results by using SSO and SA to the results 
by using SSO only. The estimate result is the integrated method is better than 
using SSO only. The results will be verified by simulation in the end. The 
production line is consisting of four workstations, three finite-size buffers (queues), 
and an infinite supply of blank parts. This study wants to find the best scheme of 
numbers of machines and buffers for maximizing the profits. According to the 
analysis results, this study has shown that integrated method combining SSO with 
SA is better than SSO with this case study. It is expected that it could find the 
optimal solution more efficiently.  
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1. Introduction 

There is a continuous flow performed one product unit that is routed from process to 
process in a production line. Continuous flow means the materials being processed are 
continuously in motion, undergoing chemical reactions or subject to mechanical or heat 
treatment in a production line, and it can operate without a shutdown. Contrasted to 
batch production, continuous flow reduces waste problem in a traditional production 
line. However, how to the optimize resources allocation appropriately is still an 
important issue for us to discuss. As a result, this study is aim to figure out the optimal 
resources allocation and buffers in a production line for increasing efficiency and 
reducing costs. 
 Therefore, to optimize resources allocation in a production line, the aim of this study 
is to find the optimal configuration in a production line. That is, our target is to figure 
out how to allocate machines and buffers in a production line for increasing profits. 
This study is conducted as following steps. This study utilizes the integrated method, 
combining Simplified Swarm Optimization (SSO) which was originally proposed by 
Yeh [1] in 2009 with Simulated Annealing (SA) which was proposed by Metropolis et 
al [18] to find the better scheme for maximizing the profits. Then, compare the effect of 
the results by using the integrated method to the results by using SSO only. After 



analysis, the results will be verified by simulation in the end. This study expects to find 
the optimal solution more efficiently. 
 The paper is organized as follows. In chapter 2, this study discusses the literature 
review. Chapter 3 illustrates the methodology and the framework of this study. The 
case study of production line is discussed in chapter 4. Analysis and discussion are 
described in chapter 5. Conclusions and potential research issues for future study are 
given in chapter 6. 

2. Literature Review 

2.1 Simplified Swarm Optimization 
SSO is also called the discrete PSO (DPSO), an emerging, evolutionary, population-
based, and stochastic optimization algorithm method utilized to compensate for the 
drawbacks of Particle Swarm Optimization (PSO) in solving discrete problems. SSO is 
exploited to improve the process of individual update with results of classifying the 
breast cancer data more efficiently and effectively. The SSO scheme improves the 
update mechanism, which is the core of soft computing based methods, and revises the 
self-adaptive parameter control procedure [2].  

Empirical results have revealed that SSO has better convergence rate and higher 
quality solution than PSO by the simulation results [3,4]. Recently, SSO has attracted 
considerable attention and has been applied to different problems and fields widely. 
SSO was extended to general problems including continuous problems [5], breast 
cancer pattern [1], gene selection [6], no-wait flow-shop scheduling problem [7], and 
uncapacitated facility location problem [8]. To improve the performance and overcome 
the deficiencies of PSO, the Exchange Local Search (ELS) strategy is utilized with 
SSO to find a better solution from the neighborhood of the current solution which is 
produced by SSO [9]. Compared to PSO, SSO is suitable for solving discrete problems. 
The update mechanism of SSO is simple. However, this algorithm is easily reflected by 
initial solution. 
2.2 Simulated Annealing 
The method for solving combinatorial optimization problems was first demonstrated by 
Kirkpatrick et al [19], and Cˇerný [20], independently. SA is a method for 
combinatorial optimization problems, such as minimizing functions of a lot of variables. 
SA describes a group of heuristic optimization techniques based on iterative 
improvement, and it is motivated by an analogy to the statistical mechanics of 
annealing in solids. This algorithm accepts all solutions which improve the objective 
function generally, while those which do not result in improvements may be accepted 
with non-zero probabilities [19]. 

In condensed matter physics, the process of SA consists of the following two steps. 
The first one is to increase the temperature of the heat bath to a maximum value at 
which the solid melts. The second one is to decrease carefully the temperature of the 
heat bath until the particles arrange themselves in the ground state of the solid. 

When SA is utilized to solve problems, it refers to the search process to find each 
one can be Line solution (Feasible Solution). This study exploits Boltzman’s Function 
to decide whether to accept solutions. Recently, SA has many successful applications 
in many fields, including travelling salesman problem [20], global wiring [21], cluster 
problem [22], Job Shop Scheduling [23], and X-ray crystallography and solution NMR 
[24]. However, even SA is relatively easy to code and it can find an optimal solution 



statistically, but this algorithm cannot identify whether it has found an optimal solution 
and it requires other complimentary methods (e.g. branch and bound) to compensate 
for it. 
2.3  Comparison of SSO and SA 

 Advantage Disadvantage 

SSO 
(1) It is suitable for solving 

discrete problems. 
(2) Update mechanism is simple. 

(1) It is easily influenced by 
initial solution. 

SA 

(1) It is relatively easy to code, 
even for complex problems. 

(2) It can deal with arbitrary 
systems and cost functions. 

(3) The implement time is short. 

(1) The method cannot tell 
whether it has found an 
optimal solution. Some other 
complimentary method (e.g. 
branch and bound) is 
required to do this. 

 
Table1. Comparison of SSO and SA 

Each of SSO and SA has its own advantages and disadvantages. It is expected that 
integrated these two algorithms to optimize resource allocation and maximize the 
profits. The estimate result with integrated method is better than the result with SSO. 
3. Methodology 
Because the uncertainty exists in the problem and many local optimal solutions exist, 
some simulation optimization addresses the limitation of not simulating all feasible 
solutions. This study develops a simulation optimization SSO in the first section, and 
integrates SA into SSO in the second section. The mathematical model is developed in 
the third section. The results indicate that the fusion of SA and SSO performs better 
than SSO with this case study. 
3.1 Simulation Optimization of SSO 
The simulation optimization of SSO can be used on the problem of discrete stochastic 
resource allocation. In SSO procedures, the population size, the terminating condition, 
and three pre-specified parameters need to be determined initially. Then, the particle’s 
position will be kept or be updated by its pbest value or be updated by the gbest value 
or be replaced by new random value in every generation, according to this procedure.  

In this equation, i = 1, 2, …, m, where m is the population size. Xi = (xi1, 
xi2,…,xiD), where xiD is the position value of the i-th particle with respect to the D-th 
dimension of the feature space. Cw, Cp and Cg are three predetermined positive 
constants with Cw < Cp < Cg. Pi, pbest, denotes the best solution achieved so far by 
itself. Gi, gbest, is the best solution achieved so far by the whole particle. x represents 
the new value for the particle in every dimension which are generated randomly.  
3.2 Integrating SA into SSO 
With the design of the SA combination with SSO is to select the global best among 
the set of positions more efficiently. The SA combination with SSO algorithm is 
stated as follows, and the procedure is shown in Fig1. 



Step 1: Parameter setting for SA, SSO. For SA, the parameters are initial temperature 
(T0), the cooling rate (α), an integer temperature length (K), and the frozen condition 
(the terminal condition for SA).  
Step 2: Initiate population and evaluate the performance or fitness with SA.  
Step 3: Update the best solution in initial solution.  
Step 4: Pick a random neighbor x’ of x, where x represents a scheme.  
Step 5: Compute δ, where δ = f(x’)- f(x). 
Step 6: If δ > 0, then x is updated by x’. If δ < 0, then calculate PR(A). PR(A) = min 
{1, e(−δ/𝑇𝑇𝑘𝑘)}, where T𝑘𝑘 is the current temperature. If PR(A) ≥ R, where R is generated 
randomly between 0 and 1, then we accept the scheme. Otherwise, we reject the 
scheme.  
Step 7: Update Tk by the formulation: Tk+1 = αTk.  
Step 8: If it reached the frozen condition, then we go to Step 9; otherwise, we go back 
to step 4.  
Step 9: Determine the initial particle and generate population for SSO. 
Step 10: Evaluate the performance or fitness of the population. 
Step 11: Record Pbest and Gbest.  
Step 12: Update particles position according to Eqs.(1). 
Step 13: Evaluate the performance. 
Step 14: Update Pbest and Gbest. 
Step 15: If it reached the terminal condition, then we go to Step 16. Otherwise, we go 
back to step 12. 
Step 16: The algorithm is stopped. 
 

 
Fig1. The flowchart of SA combination with SSO algorithm. 

 
3.3 The Mathematical Model 
In the study, the problem can be described as four parts and three buffers, selecting the 
amount of the stations and the buffers so as to maximize the profit:  
Notations 

𝑊𝑊𝑖𝑖    number of  machine in workstation i,  1≤i≤ m. 
𝐵𝐵𝑗𝑗      size of capacity in buffer  j,  1≤j≤n . 



TH   throughput of the production line 
𝑀𝑀𝑐𝑐    cost of  operating  for  each  machine. 
𝐵𝐵𝑐𝑐     cost of  buffer for each capacity. 
P      price of each product 

Objective function:  
Max Profit = P*E[TH]-𝑀𝑀𝑐𝑐 ∑ 𝑊𝑊𝑖𝑖

𝑚𝑚
𝑖𝑖=1 -𝐵𝐵𝑐𝑐 ∑ 𝐵𝐵𝑗𝑗𝑛𝑛

𝑗𝑗=1  
Subject to： 

    1≤  𝑊𝑊𝑖𝑖 ≤3,     ∀i 
    1≤  𝐵𝐵𝑗𝑗  ≤10,   ∀j 

4. Case Study 
This study is discussing the production line is consisting of four parts, three finite-size 
buffers (queues), and an infinite supply of blank parts. This concept was originally 
proposed by Papadopoulos [17], the paper proposes a K-station line consists of K 
machines in series, labeled…, and K1 locations for buffers, labeled …, and it is applied 
to production lines. This study utilizes the concept to the production line, and it is 
shown as Fig 2. This study wants to find the best scheme of numbers of machines and 
buffers for maximizing the profits. 

We assume that the cost of adding a buffer capacity is $5,000, including venue 
cost and management cost. The cost of adding a machine is $25,000, including 
maintenance cost and labor cost. Revenue of selling a product is $100. Materials arrival 
follow exponential distribution whichλ= 5min, and the process time of workstation 1 
follow exponential distribution whichλ= 20min, the process time of workstation 2 
follow exponential distribution whichλ= 30min, the process time of workstation 3 
follow exponential distribution whichλ= 12min, and the process time of workstation 4 
follow exponential distribution whichλ= 15min.  

 
Workstation1      Workstation2      Workstation3        Workstation4 

       

 
                   

Buffer1                Buffer2                  Buffer3 

Fig 2. Production Line  

A. Objective Function 
Max Profit = P*E[TH]-𝑀𝑀𝑐𝑐 ∑ 𝑊𝑊𝑖𝑖

𝑚𝑚
𝑖𝑖=1 -𝐵𝐵𝑐𝑐 ∑ 𝐵𝐵𝑗𝑗           

𝑛𝑛
𝑗𝑗=1  

B. Constraints 
    1≤  𝑊𝑊𝑖𝑖 ≤3,      1 ≤i≤4,  i ∈ 𝑁𝑁 . 
    1≤  𝐵𝐵𝑗𝑗  ≤10,    1 ≤j≤3,  j ∈ 𝑁𝑁 . 

C. Parameter 
                    𝑀𝑀𝑐𝑐=25000                                                       

𝐵𝐵𝑐𝑐=5000                                                              
P =100                                                                   

5.   Analysis 



SSO is a numerous particle meta-heuristic algorithm, so its searchable solution space is 
relatively larger. While SA is a single particle meta-heuristic algorithm, its searchable 
solution space is smaller compared to SSO. The variation of SA is also larger than SSO. 
Therefore, using the characteristics of Simulated Annealing Algorithm, the updating 
process is rapid, to find a particle with a better fitness function value with a small 
number of iterations. And then the particles become the initial solution of SSO, to 
ensure that in the iterative process, the particles can move more quickly to the optimal 
search space. As features of SSO search range is large, it can compensate for the 
shortcomings of simulated annealing, which can be easy to fall into the local optimal 
solution. 

In this section the results of iteration begins to converge was compared by SA + 
SSO and SSO methods, as Fig 3 shown. We also compare the simulation time between 
the two-methods. 

 

 
Fig 3. Optimal solution for each iteration 

SA+SSO was converged at iteration at 7, and SSO was converged at 13. We can 
observe that SA+SSO is more efficient. In this issue, Applying SA to initialize solution 
is an effective method. This means that SA + SSO can find the same quality solution 
with fewer simulation resources. 

Besides, because SA is a heuristic algorithm for single particles, the expected 
computing time is shorter than SSO. The comparison of simulation time of two results 
is shown in Table 2. In the same simulation number, the simulation time of SA + SSO 
is better than SSO. 

Method SA+SSO SSO 
Simulation time(sec) 8.142 10.83 

Table 2. Simulation time of two methods  
For generating the initial solution, the integrated method can search in feasible 

region more efficiently, and avoid generating initial solution randomly which will 
waste simulation resources to search in bad solution space.  

This study compares convergence generation and time by these two methods 
individually. According to the results, no matter the convergence generation or time, 

Profit 

Iteration Number 



the integrated method has shown the better results. As expected at first, the integrated 
method is better than using SSO only. 

Through the integrated method combing SSO with SA, the optimal allocation of 
number of machines and buffers are figured out as Table 3. 

Variable   𝑾𝑾𝟏𝟏   𝑾𝑾𝟐𝟐  𝑾𝑾𝟑𝟑  𝑾𝑾𝟒𝟒 𝑩𝑩𝟏𝟏 𝑩𝑩𝟐𝟐 𝑩𝑩𝟑𝟑 
Number(unit) 3 3 2 2 2 3 1 

Table 3. Optimal solution for resource allocation 
5.1 Discussion 

This study conducts sensitivity analysis in the bottleneck workstation and its 
previous and following buffer. The optimal size of capacity for Buffer 1 is two. For 
Buffer 1, when we add one more buffer or reduce the size of capacity to one, the profit 
decreases, as Fig.4 shown. The optimal size of capacity for Workstation 2 is three. 
When the size of capacity decreases to two, the profit becomes worse. Add the size of 
capacity to four, and the profit becomes better. However, four machines for 
Workstation 2 is not in our feasible solution, so the optimal size of capacity for 
Workstation 2 in our problem is three, as Fig.5 shown. For Buffer 2, the optimal size of 
capacity is three. The size of capacity for Buffer 2 becomes more or fewer, and the 
profit is worse, as Fig.6 shown. 

 
Fig.4. The size of capacity for Buffer 1. 

 
Fig.5. The size of capacity for Workstation 2. 

Profit 

Capacity 

Number of Machine 

Profit 



 
Fig.6. The size of capacity for Buffer 2. 

6.   Conclusion 
This integrated method overcomes the drawbacks of SSO, which is easily 

influenced by the initial solution. This study generates the initial solution with SA, 
which is a fast searching algorithm. As a result, this study utilizes the integration 
method combing SSO and SA, proving that it could find the optimal solution more 
efficiently using lower simulation resources and time with this case study. Although the 
improvement range is not significant, the integrated method is expected to be used in 
the problems with larger feasible solution region, and obtain more significant effects 
with it.  
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