

智慧化企業整合 Intelligent Integration of Enterprise

Linear Regression

Steps of Define Functions

Step1: Define your network (function) structure/ model

Step2: Measure the goodness (

Step3: Find the best function

Step1: Function Structure/ Model

Step 1: Model

Step2: Goodness of Function

Step 2: Goodness of Function

Loss Function

- A measure of goodness
- Distance (error rate) between predictions and true labels
- Common loss functions: MSE, MAE, Cross entropy...

Step3: The best Function

Goal

• Minimize loss function (EX: MSE) $L(w,b) = \sum_{n=1}^{k} (\hat{y}^n - (b + w \cdot x^n))^2$

Step 3: Best Function

Gradient Descent

 $w^* = arg \min L(w)$ • Consider loss function L(w) with one parameter w: (Randomly) Pick an initial value w⁰ $\blacktriangleright \quad \text{Compute} \, \frac{dL}{dw} |_{w=w^0} \qquad w^1 \leftarrow w^0 - \eta \, \frac{dL}{dw} |_{w=w^0}$ Loss L(w) $\blacktriangleright \quad \text{Compute} \, \frac{dL}{dw} |_{w=w^1} \qquad w^2 \leftarrow w^1 - \eta \, \frac{dL}{dw} |_{w=w^1}$ Many iteration Local global minima minima w⁰ W^2 \mathbf{W}^{T} W w¹

http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2017/Lecture/Regression.pdf

Step 3: Best Function

Something You Should Know

A more complex model yields lower error on **training data**.

However, it **does not always** lead to better performance on **testing data**.

Bias and Variance

Bias v.s. Variance

Overfitting, Underfitting

What to do with large bias or variance?

- For bias, redesign your model:
 - Add more features as input
 - A more complex model

- For Variance
 - more data :
 - Very effective, but not always practic
 - Regularization

References

- <u>http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2017/</u> <u>Lecture/Regression.pdf</u>
- <u>http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2017/</u> Lecture/Bias%20and%20Variance.pdf

Classroom Test

Please use The Housing dataset from UCI to predict the house prices.

You are asked to:

 generate a pairwise plot to observe how the data is distributed, and briefly illustrate what you have observed
show your linear regression parameters (slope and bias)
visualize how the linear regression line fits the training data

• Turn in your work with the format of .ipynb , and please write some brief comments in your ipynb to illustrate your results.

Homework

 Please use the 'insurance.csv' file on iLMS and what we taught in TA class to predict the insurance charge with age. You are asked to:

1. generate a pairwise plot to observe how the data is distributed, and briefly illustrate what you have observed, you may add other plot to observe data

2. show your linear regression parameters (slope and bias)

3. visualize how the linear regression line fits the data

- Hint: you can use 'LabelEncoder()' to transform categorical data to label
- Turn in your work with the format of .ipynb , and please write some brief comments in your ipynb to illustrate your results.